Answer:
The smallest unit of a compound is a molecule, which is made up of atoms held together by bonds.
<u>Answer:</u> The correct answer is 1.18 g.
<u>Explanation:</u>
We are given a chemical equation:

We know that at STP conditions:
22.4L of volume is occupied by 1 mole of a gas.
So, 2.21L of carbon dioxide is occupied by =
of carbon dioxide gas.
By Stoichiometry of the above reaction:
1 mole of carbon dioxide gas is produced by 1 mole of carbon
So, 0.0986 moles of carbon dioxide is produced by =
of carbon.
Now, to calculate the mass of carbon, we use the equation:

Moles of carbon = 0.0986 mol
Molar mass of carbon = 12 g/mol
Putting values in above equation, we get:

Hence, the correct answer is 1.18 g.
<span>Charles' law says "at a constant pressure, the volume of a fixed amount of gas is directly proportional to its absolute temperature".
V </span>α T
Where V is the volume and T is the temperature in Kelvin of the gas. We can use this for two situations as,
V₁/T₁ = V₂/T₂
V₁ = 2.00 L
T₁ = 40.0 ⁰C = 313 K
V₂ = ?
T₂ = 30.0 ⁰C = 303 K
By applying the formula,
2.00 L / 313 K = V₂ / 303 K
V₂ = (2.00 L / 313 K) x 303 K
V₂ = 1.94 L
Hence, the volume of the balloon at 30.0 ⁰C is 1.94 L
1. For this question, the adjective small must be percepted in a relative sense. This is because it is not the smallest ion (that would be hydrogen). It could be that the antimony and beryllium ions are smaller compared to their neutral forms. This is because they donate electrons when ionized. As a result, the electrons are reduced, so does the electron cloud which makes the radius much smaller.
2. The periodic table is arranged in terms of increasing atomic number. For neutral atoms, the number of protons (atomic number) is equal to the number of electrons. So, the farther we go down the table, the higher the atomic number. The higher the atomic number, the bigger the electron cloud which makes the atomic radius bigger. Because by definition, atomic radius is the length from the nucleus to the farthest electron from the nucleus.
MH₂ = 2×mH = 2×1g = 2 g/mol