This uses something called <span>Le Chatelier's principle. It states essentially that any stress put upon a system will be corrected.
In more simple terms, it means that in an equilibrium, such as the equation N2(g) + 3H2(g) <=> 2NH3(g), removing a reactant will cause the system to create more of said reactant to compensate for its loss, or adding excess reactant will cause the system to remove some of the added reactant. For future reference, the same principle applies to products in an equilibrium as well.
In this case, hydrogen gas is a reactant, and hydrogen is being removed. According to </span><span>Le Chatelier's principle, the system will shift to create more hydrogen gas. In essence, it will shift in the direction of the hydrogen gas, so there will be a shift toward the reactants.
To clear something up, Keq will not change, as it is a constant value with constant conditions (such as temperature, pressure, etc.).</span>
Answer:
Potassium is more reactive than aluminium, so no reaction takes place. But aluminium is more reactive than copper, so it replaces the copper in copper nitrate
<h3>Explanation:</h3>
More reactive metal compound + less reactive metal
-> no reaction
However
Less reactive metal compound + more reactive metal
-> more reactive metal compound + less reactive metal
This is called substitution reaction where the more reactive metal replaces the less reactive metal in the compound.
5. 25 x 10⁻⁷mg
Explanation:
This is mass conversion from mg to kg;
The kg is a quantity of mass used to measure the amount of matter in a substance.
Given mass = 5.25 x 10⁻¹³kg
The kilo- is a prefix that denotes 10³
therefore;
1000g = 1kilogram
the milli- is a prefix that denotes 10⁻⁻³
1000mg = 1g
Now that we know this, we can convert:
5.25 x 10⁻¹³kg x
= 5. 25 x 10⁻¹³ x 10⁶mg
= 5. 25 x 10⁻⁷mg
learn more:
Conversion brainly.com/question/1548911
#learnwithBrainly
Answer:

Explanation:
<em>Ferrous Sulphate</em>
<em> is generally found as Lime-Green Crystals. On heating, these crystals almost immediately turn white-yellow. They then, break down to produce an anhydrous mixture of Sulphur Trioxide </em>
<em>, Sulphur Dioxide </em>
<em> as well as Ferric Oxide </em>
<em>.</em>
<em>We can hence, frame a skeletal equation of this reaction and try to balance it.</em>
<em>Hence,</em>

<em>Now,</em>
<em>a)In order to balance it through the 'Hit &Trial Method', we'll follow a series of </em><em>steps</em><em>:</em>
<em>1. First, lets compare the number of Fe (Iron) atoms on the RHS and LHS. We find that, the no. of Fe Atoms on the RHS is twice the number of Fe Atoms on the LHS. We hence, add a co-effecient 2 beside </em>
.
<em>2. Now, Iron atoms, Sulphur Atoms and Oxygen atoms occur 2, 2, 8 respectively on both the sides:</em>
<em> Hence, As all the other elements as well as iron, balance, we've arrived upon our Balanced Equation :</em>
<em> </em>
<em>b) We know that, decomposition reactions are [generally] endothermic reactions in which Large Compounds </em><em>decompose </em><em>into smaller elements and compounds. Here, as Ferrous Sulphate </em><em>decomposes </em><em>into Sulphur Dioxide, Sulphur Trioxide and Ferric Oxide, the reaction that occurs here is </em><em>Decomposition Reaction.</em>