Answer:
-irrational
-rational
-rational
-irrational
__________________________________________________________quick and easy way is to see if the squares are perfect squares, like square root seven is irrational, so the answer is irrational. square root 9 is 3, which is rational, so its rational.
brainliest is appreciated :)
1.
"The spending limit on John’s credit card is given by the function f(x)=15,000+1.5x"
means that if the monthly income of John is $ 5,000 ,he can spend at most
f(5,000)=15,000+1.5*5,000=15,000+ 7,500=22, 500 (dollars)
Or for example
if Johns monthly income is $8,000, then he can spend at most
f(8,000)=15,000+1.5*8,000=15,000+ 12,000=27,000 (dollars)
2.
Now, assume that the maximum amount that John can spend is y.
Then, y=15,000+1.5x
we can express x, the monthly income, in terms of y by isolating x:
y=15,000+1.5x
1.5x = y-15,000
X=y-15,000/1.5
thus, in functional notation, x, the monthly income, is a function , say g, of variable y, the max amount:
X=g(y) y-15000/1.5
since we generally use the letter x for the variable of a function, we write g again as:
G (x) x-15000/1.5
tells us that if the maximum amount that John can spend is 50,000 $, then his monthly income is 23,333 $.
3.
If John's limit is $60,000, his monthly income is
G(600,000)=60,000-15,000/ 1.5=45,000/1.5 =30,000
dollars.
Answer: $ 30,000
Remark: g is called the inverse function of f, since it undoes what f does.
instead of g(x), we could use the notation
Answer: $25 spent
Step-by-step explanation: the boy spent $15/total.
15/total=3/8
Divide by common factor: $15/3=$5 (1/8 total money
$5x8=$40
$40-$15=$25 spent
Answer:
I think C or D
Step-by-step explanation:
Answer:
- There is no significant evidence that p1 is different than p2 at 0.01 significance level.
- 99% confidence interval for p1-p2 is -0.171 ±0.237 that is (−0.408, 0.066)
Step-by-step explanation:
Let p1 be the proportion of the common attribute in population1
And p2 be the proportion of the same common attribute in population2
: p1-p2=0
: p1-p2≠0
Test statistic can be found using the equation:
where
- p1 is the sample proportion of the common attribute in population1 (
)
- p2 is the sample proportion of the common attribute in population2 (
)
- p is the pool proportion of p1 and p2 (
)
- n1 is the sample size of the people from population1 (30)
- n2 is the sample size of the people from population2 (1900)
Then
≈ 2.03
p-value of the test statistic is 0.042>0.01, therefore we fail to reject the null hypothesis. There is no significant evidence that p1 is different than p2.
99% confidence interval estimate for p1-p2 can be calculated using the equation
p1-p2±
where
- z is the z-statistic for the 99% confidence (2.58)
Thus 99% confidence interval is
0.533-0.704±
≈ -0.171 ±0.237 that is (−0.408, 0.066)