Answer:
a₁ = 0.63 m/s² (East)
a₂ = -1.18 m/s² (West)
Explanation:
m₁ = 95 Kg
m₂ = 51 Kg
F = 60 N
a₁ = ?
a₂ = ?
To get the acceleration (magnitude and direction) of the man we apply
∑Fx = m*a (⇒)
F = m₁*a₁ ⇒ 60 N = 95 Kg*a₁
⇒ a₁ = (60N / 95Kg) = 0.63 m/s² (⇒) East
To get the acceleration (magnitude and direction) of the woman we apply
∑Fx = m*a (⇒)
F = -m₂*a₂ ⇒ 60 N = -51 Kg*a₂
⇒ a₂ = (60N / 51Kg) = -1.18 m/s² (West)
For every case we apply Newton’s 3
d Law
Answer:
32.76 Volt
Explanation:
frequency, f = 400 Hz
Area of crossection, A = 13 cm²
Maximum flux density, B = 0.9 tesla
Number of turns in secondary coil, N = 70
Let the maximum induced voltage is e.
According to the Faraday's law of electromagnetic induction, the induced emf is equal to the rate of change of magnetic flux.
e = dФ/dt

Time is defined as the reciprocal of frequency.
So, e = N B A f
e = 70 x 0.9 x 13 x 10^-4 x 400
e = 32.76 volt