Form concentric circles around the wire
Answer:
answer is 2 option because more force is applied
Answer:
A) 60%
B) p2 = 1237.2 kPa
v2 = 0.348 m^3
C) w1-2 = w3-4 = 1615.5 kJ
Q2-3 = 60 kJ
Explanation:
A) calculate thermal efficiency
Л = 1 -
where Tl = 300 k
Th = 750 k
hence thermal efficiency ( Л ) = [1 - ( 300 / 750 )] * 100 = 60%
B) calculate the pressure and volume at the beginning of the isothermal expansion
calculate pressure ( P2 ) :
= P3v3 = mRT3 ----- (1)
v3 = 0.4m , mR = 2* 0.287, T3 = 750
hence P3 = 1076.25
next equation to determine P2
Qex = p3v3 ln( p2/p3 )
60 = 1076.25 * 0.4 ln(p2/p3)
hence ; P2 = 1237.2 kpa
calculate volume ( V2 )
p2v2 = p3v3
v2 = p3v3 / p2
= (1076.25 * 0.4 ) / 1237.2
= 0.348 m^3
C) calculate the work and heat transfer for each four processes
work :
W1-2 = mCv( T2 - T1 )
= 2*0.718 ( 750 - 300 ) = 1615.5 kJ
W3-4 = 1615.5 kJ
heat transfer
Q2-3 = W2-3 = 60KJ
Q3-4 = 0
D ) sketch of the cycle on p-V coordinates
attached below
Answer:
Explanation:
Given that,
5J work is done by stretching a spring
e = 19cm = 0.19m
Assuming the spring is ideal, then we can apply Hooke's law
F = kx
To calculate k, we can apply the Workdone by a spring formula
W=∫F.dx
Since F=kx
W = ∫kx dx from x = 0 to x = 0.19
W = ½kx² from x = 0 to x = 0.19
W = ½k (0.19²-0²)
5 = ½k(0.0361-0)
5×2 = 0.0361k
Then, k = 10/0.0361
k = 277.008 N/m
The spring constant is 277.008N/m
Then, applying Hooke's law to find the applied force
F = kx
F = 277.008 × 0.19
F = 52.63 N
The applied force is 52.63N