Answer:
The Ptolemaic model of the universe <u><em>A) explained and predicted the motions of the planets with deferents and epicycles.</em></u>
Explanation:
Ptolemy of Alexandria built an explanation of the observed movements of the planets that remained in force for thirteen centuries. Ptolemy proposed a model of the Universe with the Earth in the center. In the model, the Earth remains stationary while the planets, the Moon and the Sun describe complicated orbits around it. In other words, Ptolemy devised a system in which he used epicycles, deferential and eccentric, and it was necessary to introduce an equating point to reproduce planetary movements. He proposed that:
a) Each planet revolves with constant velocity around a circle called an epicycle.
b) The center of the epicycle is located and moves with constant velocity around another circle called deferential.
c) The center of the deferent is located at a moving point, which travels with constant speed describing another circumference called eccentric.
d) The center of the eccentric coincides with the center of the Universe.
e) Since the Earth is not located in the center of the Universe, but very close to it, it was necessary to introduce an equating point, which is not on Earth, and from which you can see the planet move with constant speed.
However, Ptolemy put forward this geometric theory to explain mathematically the movements and failed to adjust any system of cycles, epicycles and eccentrics that accurately represented the observed movements of the planets.
Finally, <u><em>The Ptolemaic model of the universe A) explained and predicted the motions of the planets with deferents and epicycles.</em></u>
Well, in order to figure out the answer is to divide until you figure out how many miles they went per second. If it takes 5 seconds to reach 50 miles per hour it took 10 seconds per every 10 miles meaning each mile took 1 second. (Not actually possible but the answer) So, If it finished a 100 mile trip in 2 hours it took an hour for 50 miles. If it took 1 hour for 50 miles divide 60/50 which gets you 1.2 so it took 1.2 miles per minute meaning the car went 120 miles per hour I believe. I hope this helps :)
They carry opposite charge ( one has negative charge and one has positive charge)
<span>In this particular case, where car is moving through curvature, so it is moving in circular motion, force acting on car is centripetal force which holds car not to fly out. Centripetal force is always pointed in the middle of circle. Here frictional force has role of centripetal force. If frictional force is to weak, car would fly out of curvutare.</span>
Answer: 345600 J
Explanation: solution attached
KE= 1/2 mv²