Answer:
a= 23.65 ft/s²
Explanation:
given
r= 14.34m
ω=3.65rad/s
Ф=Ф₀ + ωt
t = Ф - Ф₀/ω
= (98-0)×
/3.65
98°= 1.71042 rad
1.7104/3.65
t= 0.47 s
r₁(not given)
assuming r₁ =20 in
r₁ = r₀ + ut(uniform motion)
u = r₁ - r₀/t
r₀ = 14.34 in= 1.195 ft
r₁ = 20 in = 1.67 ft
= (1.667 - 1.195)/0.47
0.472/0.47
u= 1.00ft/s
acceleration at collar p
a=rω²
= 1.67 × 3.65²
a = 22.25ft/s²
acceleration of collar p related to the rod = 0
coriolis acceleration = 2ωu
= 2× 3.65×1 = 7.3 ft/s²
acceleration of collar p
= 22.5j + 0 + 7.3i
√(22.5² + 7.3²)
the magnitude of the acceleration of the collar P just as it reaches B in ft/s²
a= 23.65 ft/s²
Explanation:
There are many students who can not get answers step by step and on time
So there are a wats up group where you can get help step by step and well explained by the trusted experts.
just join
post question
get answer
The amplitude of a wave tells us about the intensity or brightness of the light relative to other light waves of the same wavelength.
Answer:
Time taken to reach the tree
they have given the maximum height which is 25m
therefore...
v=u+at (upward)
0 = 45sin(20)-9.81t
t = 1.56s
<u>Answer:</u>
According to newton's first law of motion, friction is required to make an object slow down.
<u>Explanation:</u>
According to the Newton's first law of motion, for an object to change its velocity (either a change in the magnitude or the direction), there must be a cause to it which is defined as a net external force.
For example, an object which is sliding across a table or floor slows down due to the net force of friction that is acting on that object.