Check the picture below.
let's firstly convert the mixed fractions to improper fractions.
![\stackrel{mixed}{7\frac{1}{2}}\implies \cfrac{7\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{15}{2}} ~\hfill \stackrel{mixed}{12\frac{1}{2}}\implies \cfrac{12\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{25}{2}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B7%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B7%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B15%7D%7B2%7D%7D%20~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B12%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B12%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B25%7D%7B2%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\stackrel{\textit{\Large Areas}}{\stackrel{two~triangles}{2\left[ \cfrac{1}{2}\left(\cfrac{15}{2} \right)(10) \right]}~~ + ~~\stackrel{\textit{three rectangles}}{(10)(15)~~ + ~~\left( \cfrac{15}{2} \right)(15)~~ + ~~\left( \cfrac{25}{2} \right)(15)}} \\\\\\ 75~~ + ~~150~~ + ~~112.5~~ + ~~187.5\implies \boxed{525}](https://tex.z-dn.net/?f=%5Cstackrel%7B%5Ctextit%7B%5CLarge%20Areas%7D%7D%7B%5Cstackrel%7Btwo~triangles%7D%7B2%5Cleft%5B%20%5Ccfrac%7B1%7D%7B2%7D%5Cleft%28%5Ccfrac%7B15%7D%7B2%7D%20%5Cright%29%2810%29%20%5Cright%5D%7D~~%20%2B%20~~%5Cstackrel%7B%5Ctextit%7Bthree%20rectangles%7D%7D%7B%2810%29%2815%29~~%20%2B%20~~%5Cleft%28%20%5Ccfrac%7B15%7D%7B2%7D%20%5Cright%29%2815%29~~%20%2B%20~~%5Cleft%28%20%5Ccfrac%7B25%7D%7B2%7D%20%5Cright%29%2815%29%7D%7D%20%5C%5C%5C%5C%5C%5C%2075~~%20%2B%20~~150~~%20%2B%20~~112.5~~%20%2B%20~~187.5%5Cimplies%20%5Cboxed%7B525%7D)
Answer: AE=13
Step-by-step explanation: took test
Answer:
a² = 144
b² = 25
c² = 169
c = 13
Step-by-step explanation:
• a² = 12×12
= 144
• b² = 5×5
= 25
• a² + b² = c²
= 144 + 25 = 169
• c = _/169
= 13
Answer: x=4
Step-by-step explanation:
We know that line segment AC= AB + BC
we also know that AB= 3x+8 and BC= 2x-5
by substituting these, we get AC= (3x+8)+(2x-5)
AC is given as being 23, so we know that
23= (3x+8)+(2x-5)
by combining like terms, we get that
5x+3=23
simplify this to get that x=4