Answer:
K = 0.045 J
Explanation:
It is given that,
Mass of a ball, m = 10 g = 0.01 kg
Speed of the ball, v = 3 m/s
To find,
The energy of the ball.
Solution,
Due to the motion of the ball, it will have kinetic energy. It can be given by the formula as follows :

So, the ball will have a kinetic energy of 0.045 J.
Realtor does all of the above items
Answer:
the above picture might help
In a real system of levers, wheel or pulleys, the AMA (actual mechanical advantage) is less than the IMA (ideal mechanical advantage) because of the presence of friction.
In fact, the IMA and the AMA of a machine are defined as the ratio between the output force (the load) and the input force (the effort):

however, the difference is that the IMA does not take into account the presence of frictions, while the AMA does. As a result, the output force in the AMA is less than the output force in the IMA (because some energy is dissipated due to friction), and the AMA is less than the IMA.
Answer
given,
change in enthalpy = 51 kJ/mole
change in activation energy = 109 kJ/mole
when a reaction is catalysed change in enthalpy between the product and the reactant does not change it remain constant.
where as activation energy of the product and the reactant decreases.
example:
ΔH = 51 kJ/mole
E_a= 83 kJ/mole
here activation energy decrease whereas change in enthalpy remains same.