Answer:
The angle (relative to vertical) of the net force of the car seat on the officer to the nearest degree is <u>10°.</u>
Explanation:
Given:
Mass of the driver is, 
Radius of circular turn is, 
Linear speed of the car is, 
Since, the car makes a circular turn, the driver experiences a centripetal force radially inward towards the center of the circular turn. Also, the driver experiences a downward force due to her weight. Therefore, two forces act on the driver which are at right angles to each other.
The forces are:
1. Weight = 
2. Centripetal force, 'F', which is given as:

Now, the angle of the net force acting on the driver with respect to the vertical is given by the tan ratio of the centripetal force (Horizontal force) and the weight (Vertical force) and is shown in the triangle below. Thus,
°
Therefore, the angle (relative to vertical) of the net force of the car seat on the officer to the nearest degree is 10°.
Great question !
The rate at which an object covers distance, without worrying
about the direction it's moving, is the object's SPEED .
When the direction is also given, then you have the object's VELOCITY.
This question is important. It gives us a chance to point out that
"velocity" is not just a fancy word for speed that you use when you
want to sound smart. There's actually an important difference between
'speed' and 'velocity'.
Answer:
F=BILsin90 when perpendicular sin90 =1 30T x50x30 so you can get 45000N
So lunar eclips earth between sun and moon
Solar eclips moon between sun and earth.
About the 3th.. im not sure, it depends on if you meen a total solar eclips or not... i think total is more rare then a lunar eclipse..
B an egg released from the ovary. It’s probably wrong