Answer:
It will cause kinetic energy to increase.
Explanation:
Given that Speed and Motion you went from the starting line to the finish line at different rates.
If you repeated the activity while carrying weights but keeping your times the same, the weight carried will add up to the mass of the body.
And since Kinetic energy K.E = 1/2mv^2
Increase in the mass of the body will definitely make the kinetic energy of the body to increase.
Since the time is the same, that means the speed V is the same.
Weight W = mg
m = W/g
The new kinetic energy will be:
K.E = 1/2(M + m)v^2
This means that there will be increase in kinetic energy.
The wavelength was doubled, and its energy will be increased by 4 times.
looking at the formula
energy 
also, 
hence it is clear from above that energy is directly proportional to the square of the wavelength.
hence, The wavelength was doubled, and its energy will be increased by 4 times.
<h3>
What is Wavelength?</h3>
- The distance over which a periodic wave's shape repeats is known as the wavelength in physics.
- It is a property of both traveling waves and standing waves as well as other spatial wave patterns. It is the distance between two successive corresponding locations of the same phase on the wave, such as two nearby crests, troughs, or zero crossings.
- The spatial frequency is the reciprocal of the wavelength. The Greek letter lambda is frequently used to represent wavelength.
- The term wavelength is occasionally used to describe modulated waves, their sinusoidal envelopes, or waves created by the interference of several sinusoids.
To learn more about wavelength with the given link
brainly.com/question/13533093
#SPJ4
Answer:
Energy
Explanation:
When an object vibrates, it creates kinetic energy that is transmitted by molecules in the medium. As the vibrating sound wave comes in contact with air particles passes its kinetic energy to nearby molecules. As these energized molecules begin to move, they energize other molecules that repeat the process.
Answer:
On Earth all bodies have a weight, or downward force of gravity, proportional to their mass, which Earth's mass exerts on them. Gravity is measured by the acceleration that it gives to freely falling objects. At Earth's surface the acceleration of gravity is about 9.8 metres (32 feet) per second per second.