Answer:
<em>1.01 W/m</em>
Explanation:
diameter of the pipe d = 30 mm = 0.03 m
radius of the pipe r = d/2 = 0.015 m
external air temperature Ta = 20 °C
temperature of pipe wall Tw = 150 °C
convection coefficient at outer tube surface h = 11 W/m^2-K
From the above,<em> we assumed that the pipe wall and the oil are in thermal equilibrium</em>.
area of the pipe per unit length A =
=
m^2/m
convectional heat loss Q = Ah(Tw - Ta)
Q = 7.069 x 10^-4 x 11 x (150 - 20)
Q = 7.069 x 10^-4 x 11 x 130 = <em>1.01 W/m</em>
<h2>Answer:</h2>
<u>By wrapping the wire along a solenoid and connecting it to electricity</u>
<h2>Explanation:</h2>
If you wrap a copper wire into coils and run an electrical current through it, you will create a magnetic field. If you rotate a permanent magnet as opposed to an item that has been magnetized inside a coil of copper wire, you can create an electrical current. The strength of magnetic field generated is proportional to the amount of current through the winding.
Answer:
A heterogeneous mixture is simply any mixture that is not uniform in composition - it's a non-uniform mixture of smaller constituent parts.
Explanation: