Carry out the mult.: f(x) = -[x^2 - 21x + 9x - 189]
Combine like terms: f(x) = -[x^2 - 12x - 189]
Eliminate the brackets [ ]: f(x) = -x^2 + 12x + 189
Identify coefficients a, b and c: a= -1, b=12, c=189
The equation of the axis of symmetry is x = -b/(2a), which here equals
x = -(12)/[2(-1)], or x = 6
This is also the x-coordinate of the vertex. Plug x=6 into the original equation to calculate the y-coordinate.
Answer:
<h2>20</h2>
<em>Solution</em><em>,</em>
<em><</em><em>N=</em><em>1</em><em>8</em><em>0</em><em>-</em><em>5</em><em>3</em><em>-</em><em>4</em><em>4</em>
<em> </em><em> </em><em> </em><em> </em><em>=</em><em>8</em><em>3</em>
<h3>
<em>Apply </em><em>sines </em><em>rule,</em></h3>
<em>
</em>
<em>hope </em><em>this </em><em>helps.</em><em>.</em>
<em>Good </em><em>luck</em><em> on</em><em> your</em><em> assignment</em><em>.</em><em>.</em>
Step-by-step explanation:-8.8e +122
Answer and step-by-step explanation:
We learn that (a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3
So in this case, it would be:
= x^3 + (3*x^2*2) + (3*x*2^2) + 2^3
= x^3 + 6x^2 + 3x * 4 + 8
= x^3 + 6x^2 + 12x + 8
This is the standard form of the equation
Hope it help you :3