To solve this problem we will apply the concepts related to the Doppler effect. The Doppler effect is the change in the perceived frequency of any wave movement when the emitter, or focus of waves, and the receiver, or observer, move relative to each other. Mathematically it can be described as

Here,
=frequency received by detector
=frequency of wave emitted by source
=velocity of detector
=velocity of source
v=velocity of sound wave
Replacing we have that,


Therefore the frequencty that will hear the passengers is 422Hz
It MUST be either glue or gravity.
First, we would need to know the decaying isotope.
Next, we use the decay formula
A = Ao e^(-kt)
After determining the remaining amount after two hours, the decay reaction can be used to determine the number of gamma rays released. If the given is in terms of mole, then the total energy is
E = 140n KeV where n is the number of moles of gamma rays released
Answer:

Explanation:
given,
Angular speed of the tire = 32 rad/s
Displacement of the wheel = 3.5 rev
Δ θ = 3.5 x 2 π
= 7 π rad
now,
Time interval of the car to rotate 7π rad
using equation



Time taken to rotate 3.5 times is equal to 0.687 s.