Choice A is correct.======Kinetic energy equation: KE = (1/2)(m)(v²)This tells us that KE is directly proportional to mass and the square of velocity. In other words, the more mass and more velocity an object has, the more kinetic energy.If an object is sitting at the top of a ramp, there is no velocity and therefore no kinetic energy. Choices B and D are wrong.A golf ball has more mass than a ping-pong ball, so a ping-pong ball would have less kinetic energy than a golf ball rolling off the end of a ramp. Choice C is wrong.Choice A is correct.
Answer:
v = 6.45 10⁻³ m / s
Explanation:
Electric force is
F = q E
Where q is the charge and E is the electric field
Let's use Newton's second law to find acceleration
F- W = m a
a = F / m - g
a = q / m E g
Let's calculate
a = -1.6 10⁻¹⁹ / 9.1 10⁻³¹ (-1.30 10⁻¹⁰) - 9.8
a = 0.228 10² -9.8
a= 13.0 m / s²
Now we can use kinematics, knowing that the resting parts electrons
v² = v₀² + 2 a y
v =√ (0 + 2 13.0 1.6 10⁻⁶)
v = 6.45 10⁻³ m / s
<u>Acceleration</u> is the rate at which <u>velocity</u> changes.
Answer:
the time comes eventually.
Explanation:
ur body just be giving up
Answer:
Explanation:
a )
change in the gravitational potential energy of the bear-Earth system during the slide = mgh
= 45 x 9.8 x 11
= 4851 J
b )
kinetic energy of bear just before hitting the ground
= 1/2 m v²
= .5 x 45 x 5.8²
= 756.9 J
c ) If the average frictional force that acts on the sliding bear be F
negative work done by friction
= F x 11 J
then ,
4851 J - F x 11 = 756.9 J
F x 11 = 4851 J - 756.9 J
= 4094.1 J
F = 4094.1 / 11
= 372.2 N