1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lidiya [134]
3 years ago
8

In general, the ________ of a simple machine is the ratio of the distance over which the force is applied to the distance over w

hich the load is moved.
Physics
2 answers:
aksik [14]3 years ago
3 0
Mechanical advantage, i hope i helped you!
andrey2020 [161]3 years ago
3 0
Mechanical advantage 
You might be interested in
Suppose that you have a 680 Ω, a 720 Ω and a 1.20 kΩ resistor. (a) What is the maximum resistance you can obtain by combining th
Delvig [45]

Explanation:

As the given data is as follows.

    R_{1} = 680 \ohm ohm\ohm,    R_{2} = 720 \ohm ohm,

   R_{3} = 1.2 k\ohm = 1200 \ohm   (as 1 k ohm = 1000 m)

(a)   We will calculate the maximum resistance by combining the given resistances as follows.

      Max. Resistance = R_{1} + R_{2} + R_{3}

                                  = (680 + 720 + 1200) \ohm ohm

                                  = 2600 ohm

or,                               = 2.6 k\ohm ohm

Therefore, the maximum resistance you can obtain by combining these is 2.6 k\ohm ohm.

(b)   Now, the minimum resistance is calculated as follows.

      Min. Resistance = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}

                                 = \frac{1}{680} + \frac{1}{720} + \frac{1}{1200}

                                 = 3.683 \times 10^{-3} ohm

Hence, we can conclude that minimum resistance you can obtain by combining these is 3.683 \times 10^{-3} ohm.

3 0
3 years ago
Mrs. Perez added a room temperature copper cube and an aluminum cube she just removed from the freezer to a beaker of boiling wa
faust18 [17]
I think the answer is A
5 0
3 years ago
Un the way to the moon, the Apollo astro-
kherson [118]

Answer:

Distance =  345719139.4[m]; acceleration = 3.33*10^{19} [m/s^2]

Explanation:

We can solve this problem by using Newton's universal gravitation law.

In the attached image we can find a schematic of the locations of the Earth and the moon and that the sum of the distances re plus rm will be equal to the distance given as initial data in the problem rt = 3.84 × 108 m

r_{e} = distance earth to the astronaut [m].\\r_{m} = distance moon to the astronaut [m]\\r_{t} = total distance = 3.84*10^8[m]

Now the key to solving this problem is to establish a point of equalisation of both forces, i.e. the point where the Earth pulls the astronaut with the same force as the moon pulls the astronaut.

Mathematically this equals:

F_{e} = F_{m}\\F_{e} =G*\frac{m_{e} *m_{a}}{r_{e}^{2}  } \\

F_{m} =G*\frac{m_{m}*m_{a}  }{r_{m} ^{2} } \\where:\\G = gravity constant = 6.67*10^{-11}[\frac{N*m^{2} }{kg^{2} } ] \\m_{e}= earth's mass = 5.98*10^{24}[kg]\\ m_{a}= astronaut mass = 100[kg]\\m_{m}= moon's mass = 7.36*10^{22}[kg]

When we match these equations the masses cancel out as the universal gravitational constant

G*\frac{m_{e} *m_{a} }{r_{e}^{2}  } = G*\frac{m_{m} *m_{a} }{r_{m}^{2}  }\\\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2}  }

To solve this equation we have to replace the first equation of related with the distances.

\frac{m_{e} }{r_{e}^{2}  } = \frac{m_{m} }{r_{m}^{2} } \\\frac{5.98*10^{24} }{(3.84*10^{8}-r_{m}  )^{2}  } = \frac{7.36*10^{22}  }{r_{m}^{2} }\\81.25*r_{m}^{2}=r_{m}^{2}-768*10^{6}* r_{m}+1.47*10^{17}  \\80.25*r_{m}^{2}+768*10^{6}* r_{m}-1.47*10^{17} =0

Now, we have a second-degree equation, the only way to solve it is by using the formula of the quadratic equation.

r_{m1,2}=\frac{-b+- \sqrt{b^{2}-4*a*c }  }{2*a}\\  where:\\a=80.25\\b=768*10^{6} \\c = -1.47*10^{17} \\replacing:\\r_{m1,2}=\frac{-768*10^{6}+- \sqrt{(768*10^{6})^{2}-4*80.25*(-1.47*10^{17}) }  }{2*80.25}\\\\r_{m1}= 38280860.6[m] \\r_{m2}=-2.97*10^{17} [m]

We work with positive value

rm = 38280860.6[m] = 38280.86[km]

<u>Second part</u>

<u />

The distance between the Earth and this point is calculated as follows:

re = 3.84 108 - 38280860.6 = 345719139.4[m]

Now the acceleration can be found as follows:

a = G*\frac{m_{e} }{r_{e} ^{2} } \\a = 6.67*10^{11} *\frac{5.98*10^{24} }{(345.72*10^{6})^{2}  } \\a=3.33*10^{19} [m/s^2]

6 0
3 years ago
An ore car of mass 39000 kg starts from rest and rolls downhill on tracks from a mine. At the end of the tracks, 19 m lower vert
cupoosta [38]

Answer:

The compression in the spring is 5.88 meters.                

Explanation:

Given that,

Mass of the car, m = 39000 kg

Height of the car, h = 19 m

Spring constant of the spring, k=4.2\times 10^5\ N/m

We need to find the compression in the spring in stopping the ore car. It can be done by balancing loss in gravitational potential energy and the increase in elastic energy. So,

mgh=\dfrac{1}{2}kx^2

x is the compression in spring

x=\sqrt{\dfrac{2mgh}{k}} \\\\x=\sqrt{\dfrac{2\times 39000\times 19\times 9.8}{4.2\times 10^5}} \\\\x=5.88\ m

So, the compression in the spring is 5.88 meters.                                                                                                                  

6 0
3 years ago
What does the diameter in meters need to be of a round parachute that the designer has determined needs to have an area of 500 s
Marrrta [24]
Area of a circle is
A= pi r^2
so
500m^2 = 3.14 r2
500/pi = r ^2
152.1549...=r^2
square root both sides
r=12.61566...
d=2r
d=25.2
to 3 sig fig
4 0
3 years ago
Other questions:
  • Help..... disregard my answers...plz help
    13·1 answer
  • The base si unit for electric is the
    11·1 answer
  • The average kinetic energy of uf6(g) is 4.98 kj/mol at some temperature. what is the average kinetic energy of sf6(g) at that sa
    15·2 answers
  • If the bug has a mass of 0.05 kg and accelerates at 2 m/s2 whats the net force on the bug
    7·1 answer
  • what is the gravitational potential energy of a 150-kg object that is suspended 5-m above the earth's surface
    7·1 answer
  • Most offshore drilling occurs:
    8·1 answer
  • This 80 kg car is moving at 20m/sec at the top where the hills radius is 100m. What is the centrifugal force?
    14·1 answer
  • Describe when the chemical<br> reaction occurs in a dry-cell<br> battery
    15·1 answer
  • A spring is compressed so that it has 7.2 J of elastic potential energy. A 0.3 kg ball is placed on top of the spring. When the
    9·1 answer
  • A cat (5kg) has a potential energy of 8J. The cat is stuck on top of a bookshelf and then falls off the bookshelf. What is the v
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!