Answer:
3.25 seconds
Explanation:
It is given that,
A person throws a baseball from height of 7 feet with an initial vertical velocity of 50 feet per second. The equation for his motion is as follows :

Where
s is the height in feet
For the given condition, the equation becomes:

When it hits the ground, h = 0
i.e.

It is a quadratic equation, we find the value of t,
t = 3.25 seconds and t = -0.134 s
Neglecting negative value
Hence, for 3.25 seconds the baseball is in the air before it hits the ground.
If we have the angle and magnitude of a vector A we can find its Cartesian components using the following formula

Where | A | is the magnitude of the vector and
is the angle that it forms with the x axis in the opposite direction to the hands of the clock.
In this problem we know the value of Ax and Ay and we need the angle
.
Vector A is in the 4th quadrant
So:

So:

So:

= -47.28 ° +360° = 313 °
= 313 °
Option 4.
a) 1.57 m/s
The sock spins once every 2.0 seconds, so its period is
T = 2.0 s
Therefore, the angular velocity of the sock is

The linear speed of the sock is given by

where
is the angular velocity
r = 0.50 m is the radius of the circular path of the sock
Substituting, we find:

B) Faster
In this case, the drum is twice as wide, so the new radius of the circular path of the sock is twice the previous one:

At the same time, the drum spins at the same frequency as before, therefore the angular frequency as not changed:

Therefore, the new linear speed would be:

And substituting,

So, we see that the linear speed has doubled.
Answer:
D
Explanation:
According to newton's 2nd law rate of change of momentum is directly proportional to the force applied on the body. Since, net Force is zero this means momentum did not change or momentum of the body remained constant.
Hence, the system have constant value of momentum. Therefore, option D is correct.