Answer:
i think the answer is A
Explanation:
because in some areas, a regular pattern occurs of one high tide and one low tide each day,
Answer: Air, sea water, and carbonation dissolved in soda are all examples of homogeneous mixtures, or solutions. Hope this helps :)
Answer: Heterogenous mixtures are the ones in which we can see the different components clearly. Air is considered to be homogenous, because we don't see the different noble gases' particles floating around. Salt water is also homogenous, because salt dissolves almost completely into water, becoming hard to see without the proper equipment salt particles in it. Steel is also homogenous, since the metals that compose it are mixed during the heating. The only heterogenous would be soil, because we can see different particles in it, with different sizes, shapes, colors, etc without having to use special equipment.
<u>Answer:</u> The volume when the pressure and temperature has changed is 
<u>Explanation:</u>
To calculate the volume when temperature and pressure has changed, we use the equation given by combined gas law.
The equation follows:

where,
are the initial pressure, volume and temperature of the gas
are the final pressure, volume and temperature of the gas
Let us assume:
![P_1=1.20atm\\V_1=795mL\\T_1=116^oC=[116+273]K=389K\\P_2=0.55atm\\V_2=?mL\\T_2=75^oC=[75+273]K=348K](https://tex.z-dn.net/?f=P_1%3D1.20atm%5C%5CV_1%3D795mL%5C%5CT_1%3D116%5EoC%3D%5B116%2B273%5DK%3D389K%5C%5CP_2%3D0.55atm%5C%5CV_2%3D%3FmL%5C%5CT_2%3D75%5EoC%3D%5B75%2B273%5DK%3D348K)
Putting values in above equation, we get:

Hence, the volume when the pressure and temperature has changed is 