Answer:

Explanation:
P = Pressure = 
V = Volume = 1 cm³
n = Amount of substance
N = Number of atoms
= Avogadro's constant = 
R = Gas constant = 8.314 J/k mol
T = Temperature = 273.15+20 = 293.15 K
From the ideal gas law



The number of atoms is 
The gravitational constant (G) in its base SI units is
3/2
m
3
k
g
/
s
2
But is often seen written as
⋅
N
⋅
2/2
m
2
/
k
g
2
Where N is the Newton unit. N=kg ⋅
⋅
m/s 2
2
If the solution is treated as an ideal solution, the extent of freezing
point depression depends only on the solute concentration that can be
estimated by a simple linear relationship with the cryoscopic constant:
ΔTF = KF · m · i
ΔTF, the freezing point depression, is defined as TF (pure solvent) - TF
(solution).
KF, the cryoscopic constant, which is dependent on the properties of the
solvent, not the solute. Note: When conducting experiments, a higher KF
value makes it easier to observe larger drops in the freezing point.
For water, KF = 1.853 K·kg/mol.[1]
m is the molality (mol solute per kg of solvent)
i is the van 't Hoff factor (number of solute particles per mol, e.g. i =
2 for NaCl).
Answer:8.3m/sec 30 sec,
Explanation:
A student practicing for a track meet, ran 250 m in 30 sec. a. What was her average speed? 250 m = 8.3 m/sec 30 sec.
Answer:
The amount of time for the whole journey is 8 hours.
Explanation:
A truck covered 2/7 of a journey at an average speed of 40 mph. Representing 1 the total of the trip traveled, then the rest of the distance traveled is calculated as: 
So if the truck covered the remaining 200 miles at
, this means that
of the trip represents the 200 miles. So, to calculate the total distance traveled by the truck, you apply the following rule of three: if
of the route represents 200 miles, the integer 1 (which represents the total of the route), how many miles are they?

miles= 280
So the total distance traveled is 280 miles. Since speed is the relationship between the space traveled by an object and the time used for it (
), then if the average of the entire trip was 35 mph and the distance traveled 280 miles, the time is calculated as:

time= 8 h
<u><em>
The amount of time for the whole journey is 8 hours.</em></u>
<u><em /></u>