So we want to explain the effects of time dilation. In theory of relativity time dilation is the difference of elapsed time between two events when measured by two observers who are moving relatively to each other. A clock of an observer that is standing still in an inertial frame of reference is going to measure a different time of an event than the clock of an observer that is moving with some velocity with respect to the inertial reference frame that is not moving. In a nutshell, the moving clock is ticking slower than the clock that is standing still.
FALSE this is not true
(according to Apex 5.3.2 quiz in Physical Science A)
Franklin must not drive through a flood for there may
no road at all under the water, unless he is familiar with the road and the
flowing water is below one foot.
Moreover, if negotiating a flooded section of
road, he must drive in the middle where the water will be at its shallowest and
he must not drive through water against approaching vehicle to consider other
drivers.
Barometer duhhhh what’s else a ruler
The equation of state for an ideal gas is

where p is the gas pressure, V the volume, n the number of moles, R the gas constant and T the temperature.
The equation of state for the initial condition of the gas is

(1)
While the same equation for the final condition is

(2)
We know that in the final condition, half of the mass of the gas is escaped. This means that the final volume of the gas is half of the initial volume, and also that the final number of moles is half the initial number of moles, so we can write:


If we substitute these relationship inside (1), and we divide (1) by (2), we get

And since the initial temperature of the gas is

, we can find the final temperature of the gas: