Answer:
The magnitude of the static frictional force is 1200 N
Explanation:
given information :
radius, r = 0.380 m
applied-torque, τ1 = 456 N
The car has a constant velocity, thus the acceleration is zero
α = 0
Στ = I α
τ1 - τ2 = I α
τ2 = counter-torque
τ1 - τ2 = 0
τ1 = τ2
r x
= τ1
= the static frictional force (N)
= τ1 /r
= 456 N/0.380 m
= 1200 N
"<span>There can only be one voltage supplied" is the statement among the statements given in the question that true regarding DC current. The correct option among all the options that are given in the question is the second option or option "B'. I hope the answer comes to your help.</span>
Answer:
r= 3.2 cm
Explanation:
Given that
I= 8.7 A
B= 5.4 x 10⁻⁵ T
μo=1.25664 x 10⁻⁶
We know that magnetic filed in wire at a distance r given as


By putting the values

r=0.032 m
r= 3.2 cm
Explanation:
its the minimum amount of energy required to remove the most loosely bound electron
Weight equals mass*gravity
W = mg
Given m = 3.1 kg, g = 9.8 m/s^2
W = (3.1)(9.8)
W = 30.38