Ok cool dude bro I just need to answer a question
The magnetic field at center of circular loops of wire is 3.78 x 10¯⁵ T.
We need to know about the magnetic field at the center of circular loops of wire to solve this problem. The magnetic field at the center can be determined as
B = μ₀ . I / 2r
where B is magnetic field, μ₀ is vacuum permeability (4π×10¯⁷ H/m), I is the current and r is radius.
From the question above, we know that:
r = 4 cm = 0.04 m
I = 1.7 A
By substituting the parameter, we get
B = μ₀ . I / 2r
B = 4π×10¯⁷ . 1.7 / (2.0.04)
B = 2.67 x 10¯⁵ T
Due to the perpendicular plane of loops, the total magnetic field at center will be
Btotal = √(2(B²))
Btotal = √(2(2.67 x 10¯⁵²))
Btotal = 3.78 x 10¯⁵ T
Find more on magnetic field at: brainly.com/question/7802337
#SPJ4
Answer:
a ) 24 m/s
Explanation:
Given,
Frequency ( f ) = 6 Hz
Wavelength ( λ ) = 4 m
To find : Speed ( v ) = ?
Formula : -
v = f x λ
v
= 4 x 6
= 24 m/s
Therefore, the speed of a wave that has a frequency of 6 Hz and a wavelength of 4 m
is 24 m/s.
Without magnetic domains a magnet would have its magnetism. Magnetic domains are clusters of iron atoms that line up in the same direction when magnetized. When not magnetized the iron atoms scatter.