Answer:
31.55 m/s
Explanation:
Let the initial velocity of the arrow is u metre per second.
Angle of projection, θ = 40 degree
range = 100 m
Use the formula for the range.

100 = u^2 Sin(2 x 40) / 9.8
100 x 9.8 = u^2 Sin 80
u^2 = 995.11
u = 31.55 m/s
A :-) A.a.) Given - u = 0.00 m/s
v = 10.0 m/s
t = 1.5 sec
m = 75 kg
Solution -
a = v - u by t
a = 10 - 0 by 1.5
a = 10 by 1.5
a = 6.6 m/s^2
A.b.) sorry ! I don’t no how to do this question
(a) The skater covers a distance of S=50 m in a time of t=12.1 s, so its average speed is the ratio between the distance covered and the time taken:

(b) The initial speed of the skater is

while the final speed is

and the time taken to accelerate to this velocity is t=2 s, so the acceleration of the skater is given by

(c) The initial speed of the skater is

while the final speed is

since she comes to a stop. The distance covered is S=8 m, so we can use the following relationship to find the acceleration of the skater:

from which we find

where the negative sign means it is a deceleration.
Answer:
Hz
Explanation:
We know that
1 cm = 0.01 m
= Length of the human ear canal = 2.5 cm = 0.025 m
= Speed of sound = 340 ms⁻¹
= First resonant frequency
The human ear canal behaves as a closed pipe and for a closed pipe, nth resonant frequency is given as

for first resonant frequency, we have n = 1
Inserting the values


Hz
Answer
the answer is c because i did that before
Explanation: