Answer:
The higher the temperature, the faster the particles move, the lower the temperature, the slower.
It’s either the first or second one
I think it’s the first one - the outer cells of the blastocyst
Answer:
0.7457 g is the mass of the helium gas.
Explanation:
Given:
Pressure = 3.04 atm
Temperature = 25.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (25.0 + 273.15) K = 298.15 K
Volume = 1.50 L
Using ideal gas equation as:

where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
3.04 atm × 1.50 L = n × 0.0821 L.atm/K.mol × 298.15 K
<u>⇒n = 0.1863 moles</u>
Molar mass of helium = 4.0026 g/mol
The formula for the calculation of moles is shown below:
Thus,

<u>0.7457 g is the mass of the helium gas. </u>
Explanation:
2H2 + O2 = 2H2O
2mol. 1mol. 2mol
2mol reacts with 1mol
13mol reacts with x
x=<u>13mol</u><u> </u><u>×</u><u> </u><u>1mol</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u>2mol</u>
x= <u>13mol</u>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>2mol
x= 6.5mol of oxygen
1) The answer is: 2 moles of oxygen molecules.
Balanced chemical reaction of methane combustion:
CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(g).
Coefficients with the lowest ratio indicate the relative amounts of substances in a reaction.
In fronf of oxygen molecule is coefficient 2.
2) The answer is: 4 moles of oxygen atoms.
In one molecule of oxygen there are two oxygen atoms, so in two molecules there are four oxygen atoms.