The time difference between their landing is 2.04 seconds.
<h3>
Time of difference of the two balls</h3>
The ball thrown vertical upwards will take double of the time taken by the ball thrown vertically downwards.
Time difference, = 2t - t = t
t = √(2h/g)
where;
- h is the height of fall
- g is acceleration due to gravity
Apply the principle of conservation of energy;
¹/₂mv² = mgh
h = v²/2g
where;
h = (20²)/(2 x 9.8)
h = 20.41 m
<h3>Time of motion</h3>
t = √(2 x 20.41 / 9.8)
t = 2.04 s
Thus, the time difference between their landing is 2.04 seconds.
Learn more about time of motion here: brainly.com/question/2364404
#SPJ1
Answer:
reliability
accuracy
Explanation:
If a reading of a measurement is consistently the same then the measurement is reliable.
If a reading of measurement is close the actual value of the measurement then the reading is accurate.
Here, a stationary tree shows reading 6 mph once and 0 mph another instant. So, neither the reading of a measurement is consistent not the reading of measurement is close the actual value.
Hence, the radar has problems in its reliability and accuracy
Answer:
Option B
Explanation:
Gravitational force is a force that attracts two bodies (with a mass) towards each other. If an object has a higher mass, the gravitational pull will be greater.
According to Newton’s inverse square law:
<em>"The gravitational force is inversely proportional to the square of the distance between two bodies."</em>
About this question, the greater the distance between two gravitating bodies, the weaker is the gravitational force between them.
For speed you can differentiate the equation, for acceleration you can again differentiate the equation .
at t=0 the particle is slowing down , when you get equation for velocity put t=0 then only -1 is left