2 meters per second (2 m/s)
This is because you divide distance by time
The
resulting vector is the sum of the T + U + V vectors component to component.
Therefore, if you want to find the x component of the resulting vector, the
correct formula is:
<span>Tx + Ux + Vx</span>
Reflection. It occurs when a wave bounces from the surface of an obstacle
Say you have 60 cubic meters of an ideal gas at a pressure of 200 pascals. You heat the gas until it expands to a volume of 120 cubic meters. How much work does the gas do? All you have to do is plug in the numbers:
The gas does 12,000 joules of work as it expands under constant pressure.
The magnitude is 13.12 mV.
The steps are attached below.
<h3>How do you find the magnitude of an induced emf?</h3>
The standard SI unit of the magnetic field is the tesla (T). As an end result, we can use these equations and the equation for an induced emf due to changes in magnetic flux, ϵ=−NΔϕΔt ϵ = − N Δ ϕ Δ t, to calculate the importance of a precipitated emf in a solenoid.
The magnitude of the precipitated contemporary depends on the rate of trade of magnetic flux or the fee of reducing the magnetic area strains.
Learn more about the magnitude here: brainly.com/question/18109453
#SPJ2