1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
givi [52]
4 years ago
7

A solid conducting sphere with radius RR that carries positive charge QQ is concentric with a very thin insulating shell of radi

us 2RR that also carries charge QQ. The charge QQ is distributed uniformly over the insulating shell.
A. Find the magnitude of the electric field in the region 02R. Express your answer in terms of the variables R, r, Q, and constants
π
and
ε
0.
Physics
1 answer:
svetlana [45]4 years ago
4 0

Answer:

E=0 at r < R;

E=\frac{1}{4\pi\epsilon}\frac{Q}{r^{2}} at 2R > r > R;

E=\frac{1}{4\pi\epsilon} \frac{2Q}{r^{2}} at r >= 2R

Explanation:

Since we have a spherically symmetric system of charged bodies, the best approach is to use Guass' Theorem which is given by,

\int {E} \, dA=\frac{Q_{enclosed}}{\epsilon} (integral over a closed surface)

where,

E = Electric field

Q_{enclosed} = charged enclosed within the closed surface

\epsilon = permittivity of free space

Now, looking at the system we can say that a sphere(concentric with the conducting and non-conducting spheres) would be the best choice of a Gaussian surface. Let the radius of the sphere be r .

at r < R,

Q_{enclosed} = 0 and hence E = 0 (since the sphere is conducting, all the charges get repelled towards the surface)

at 2R > r > R,

Q_{enclosed} = Q,

therefore,

E\times4\pi r^{2}=\frac{Q_{enclosed}}{\epsilon}      

(Since the system is spherically symmetric, E is constant at any given r and so we have taken it out of the integral. Also, the surface integral of a sphere gives us the area of a sphere which is equal to 4\pi r^{2})

or, E=\frac{1}{4\pi\epsilon}\frac{Q}{r^{2}}

at r >= 2R

Q_{enclosed} = 2Q

Hence, by similar calculations, we get,

E=\frac{1}{4\pi\epsilon} \frac{2Q}{r^{2}}

You might be interested in
g Can a rigid body experience any ACCELERATION when the resultant force acting on that rigid body is zero? Explain.Can a rigid b
Advocard [28]

Answer:

<em>No, a rigid body cannot experience any acceleration when the resultant force acting on the body is zero.</em>

Explanation:

If the net force on a body is zero, then it means that all the forces acting on the body are balanced and cancel out one another. This sate of equilibrium can be static equilibrium (like that of a rigid body), or dynamic equilibrium (that of a car moving with constant velocity)

For a body under this type of equilibrium,

ΣF = 0   ...1

where ΣF is the resultant force (total effective force due to all the forces acting on the body)

For a body to accelerate, there must be a force acting on it. The acceleration of a body is proportional to the force applied, for a constant mass of the body. The relationship between the net force and mass is given as

ΣF = ma   ...2

where m is the mass of the body

a is the acceleration of the body

Substituting equation 2 into equation 1, we have

0 = ma

therefore,

a = 0

this means that<em> if the resultant force acting on a rigid body is zero, then there won't be any force available to produce acceleration on the body.</em>

<em></em>

5 0
3 years ago
what is the thickness of the central portion of a thin conveying lens can be determined very accurately by using (a) vernier cal
beks73 [17]

Option B The thickness of the central portion of a thin conveying lens can be determined very accurately by using a micrometer screw gauge.

<h3>What can be measured using a micrometer screw gauge?</h3>

One micrometer of thickness can be measured with a micron micrometre screw gauge. A Use of Micrometer Screw Gauge as like example Upon turning the screw of the micrometer screw gauge four times, a 2 mm space is covered.

<h3>What purposes does a micrometer serve?</h3>

A tool known as a micrometer is used to measure solid objects’ lengths, thicknesses, and other dimensions precisely and linearly.

<h3>What is the micrometer screw gauge’s SI unit?</h3>

The SI symbol m is also known as a micron, which is an SI-derived unit of length equaling 1106 meters, where 106 is the SI standard prefix for the prefix “micro-.” A micrometer is one-millionth of a meter.

To know more about screw gauges, visit:

brainly.com/question/4704005

#SPJ13

8 0
1 year ago
A particle moving with initial velocity of 5m/s is subjected to a uniform acceleration of -2.5 m/s2.find the displacement for ne
LUCKY_DIMON [66]
1/2vt^2-1/2at^2
1/2*5*16-1/2*2,5*16=20
6 0
3 years ago
Moist air initially at 1258C, 4 bar, and 50% relative humidity is contained in a 2.5-m3 closed, rigid tank. The tank contents ar
brilliants [131]

Here is the missing part of the question

To Determine the heat transfer, in kJ  if the final temperature in the tank is 110 deg C

Answer:

Explanation:

The image attached below shows the process on T - v diagram

<u>At State 1:</u>

The first step is to find the vapor pressure

P_{v1} = \rho_1 P_g_1

= \phi_1 P_{x  \ at \ 125^0C}

= 0.5 × 232 kPa

= 116 kPa

The initial specific volume of the vapor is:

P_{v_1} v_{v_1} = \dfrac{\overline R}{M_v}T_1

116 \times 10^3 \times v_{v_1} = \dfrac{8314}{18} \times (125 + 273)

116 \times 10^3 \times v_{v_1} = 183831.7778

v_{v_1} = 1.584 \ m^3/kg

<u>At State 1:</u>

The next step is to determine the mass of water vapor pressure.

m_{v1} = \dfrac{V}{v_{v1}}

= \dfrac{2.5}{1.584}

= 1.578 kg

Using the ideal gas equation to estimate the mass of the dry air m_aP_{a1} V = m_a \dfrac{\overline R}{M_a}T_1

(P_1-P_{v1})  V = m_a \dfrac{\overline R}{M_a}T_1

(4-1.16) \times 10^5 \times 2.5 = m_a \dfrac{8314}{28.97}\times ( 125 + 273)

710000= m_a \times 114220.642

m_a = \dfrac{710000}{114220.642}

m_a = 6.216 \ kg

For the specific volume v_{v_1} = 1.584 \ m^3/kg , we get the identical value of saturation temperature

T_{sat} = 100 + (110 -100) \bigg(\dfrac{1.584-1.673}{1.210 - 1.673}\bigg)

T_{sat} =101.92 ^0\ C

Thus, at T_{sat} =101.92 ^0\ C, condensation needs to begin.

However, since the exit temperature tends to be higher than the saturation temperature, then there will be an absence of condensation during the process.

Heat can now be determined by using the formula

Q = ΔU + W

Recall that: For a rigid tank, W = 0

Q = ΔU + 0

Q = ΔU

Q = U₂ - U₁

Also, the mass will remain constant given that there will not be any condensation during the process from state 1 and state 2.

<u>At State 1;</u>

The internal energy is calculated as:

U_1 = (m_a u_a \ _{ at \ 125^0 C})+ ( m_{v1} u_v \ _{ at \ 125^0 C} )

At T_1 = 125° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 125 ^0C } = 278.93 + ( 286.16 -278.93) (\dfrac{398-390}{400-390}   )

=278.93 + ( 7.23) (\dfrac{8}{10}   )

= 284.714 \ kJ/kg\\

At T_1 = 125° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 125^0C} = u_g = 2534.5 \ kJ/kg

U_1 = (m_a u_a \ at \ _{  125 ^0C }) + ( m_{v1} u_v  \ at \ _{125^0C} )

= 6.216 × 284.714 + 1.578 × 2534.5

= 5768.716 kJ

<u>At State 2:</u>

The internal energy is calculated as:

U_2 = (m_a u_a \ _{ at \ 110^0 C})+ ( m_{v1} u_v \ _{ at \ 110^0 C} )

At temperature 110° C, we obtain the specific internal energy of air

SO;

U_{a \ at \ 110^0C } = 271.69+ ( 278.93-271.69) (\dfrac{383-380}{390-380}   )

271.69+ (7.24) (0.3)

= 273.862 \ kJ/kg\\

At temperature 110° C, we obtain the specific internal energy of  water vapor

U_{v1 \ at \ 110^0C}= 2517.9 \ kJ/kg

U_2 = (m_a u_a \ at \ _{  110 ^0C }) + ( m_{v1} u_v  \ at \ _{110^0C} )

= 6.216 × 273.862 + 1.578 × 2517.9

= 5675.57 kJ

Finally, the heat transfer during the process is

Q = U₂ - U₁

Q = (5675.57 - 5768.716 ) kJ

Q = -93.146 kJ

with the negative sign, this indicates that heat is lost from the system.

6 0
3 years ago
One of the most efficient heat engines ever built is a coal-fired steam turbine in the Ohio River valley, operating between 1 87
k0ka [10]

Answer:The answer

Explanation:

5 0
3 years ago
Other questions:
  • The strength of intermolecular forces between particles affects physical properties of substances such as boiling point, melting
    12·2 answers
  • To hoist himself into a tree, a 72.0-kg man ties one end of a nylon rope around his waist and throws the other end over a branch
    5·1 answer
  • Question 14 Unsaved
    7·1 answer
  • A jogger runs at an average speed of 4.20 mi/h. (a) how fast is she running in m/s? (report your answer to the correct number of
    9·1 answer
  • A gas occupies 140 mL at 35.0 and 97kPa. what wlll the volume be at STP?
    6·1 answer
  • In what states does water appear on earth and on other planets?
    11·2 answers
  • A planet of mass 7.00 1025 kg is in a circular orbit of radius 6.00 1011 m around a star. The star exerts a force on the planet
    12·1 answer
  • What would be the weight of a 59.1-kg astronaut on a planet with the same density as Earth and having twice Earth's radius?
    14·1 answer
  • ОТВЕТЬТЕ !!!!СРОЧНО!!!
    14·1 answer
  • I can't wait till Christmas!!!
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!