1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
givi [52]
3 years ago
7

A solid conducting sphere with radius RR that carries positive charge QQ is concentric with a very thin insulating shell of radi

us 2RR that also carries charge QQ. The charge QQ is distributed uniformly over the insulating shell.
A. Find the magnitude of the electric field in the region 02R. Express your answer in terms of the variables R, r, Q, and constants
π
and
ε
0.
Physics
1 answer:
svetlana [45]3 years ago
4 0

Answer:

E=0 at r < R;

E=\frac{1}{4\pi\epsilon}\frac{Q}{r^{2}} at 2R > r > R;

E=\frac{1}{4\pi\epsilon} \frac{2Q}{r^{2}} at r >= 2R

Explanation:

Since we have a spherically symmetric system of charged bodies, the best approach is to use Guass' Theorem which is given by,

\int {E} \, dA=\frac{Q_{enclosed}}{\epsilon} (integral over a closed surface)

where,

E = Electric field

Q_{enclosed} = charged enclosed within the closed surface

\epsilon = permittivity of free space

Now, looking at the system we can say that a sphere(concentric with the conducting and non-conducting spheres) would be the best choice of a Gaussian surface. Let the radius of the sphere be r .

at r < R,

Q_{enclosed} = 0 and hence E = 0 (since the sphere is conducting, all the charges get repelled towards the surface)

at 2R > r > R,

Q_{enclosed} = Q,

therefore,

E\times4\pi r^{2}=\frac{Q_{enclosed}}{\epsilon}      

(Since the system is spherically symmetric, E is constant at any given r and so we have taken it out of the integral. Also, the surface integral of a sphere gives us the area of a sphere which is equal to 4\pi r^{2})

or, E=\frac{1}{4\pi\epsilon}\frac{Q}{r^{2}}

at r >= 2R

Q_{enclosed} = 2Q

Hence, by similar calculations, we get,

E=\frac{1}{4\pi\epsilon} \frac{2Q}{r^{2}}

You might be interested in
A thin ring of radius 73 cm carries a positive charge of 610 nC uniformly distributed over it. A point charge q is placed at the
kow [346]

Answer:

q = - 93.334 nC

Explanation:

GIVEN DATA:

Radius of ring  73 cm

charge on ring 610 nC

ELECTRIC FIELD p FROM CENTRE IS AT 70 CM

E  =  2000 N/C

Electric field due tor ring is guiven as

E = \frac{KQx}{[x^2+ R^2]^{3/2}}

E = \frac{9\time 10^9 \times 610\times 10^[-9} 0.70}{(0.70^2 + 0.73^2)^{3/2}}

E1 = 3714.672 N/C

electric field due to point charge q

E  =\frac[kq}{x^2}

E = \frac{9\times 10^9 \times q}{0.70^2}

E2 = 1.837\times 10^{10}\times q

now the eelctric charge at point P is

E = E1 + E22000 =  3714.672 + 1.837\times 10[10} \times q

solving for q

q = - 93.334 nC

7 0
3 years ago
A disk-shaped merry-go-round of radius 2.13 m and mass 175 kg rotates freely with an angular speed of 0.651 rev/s. A 55.4 kg per
GREYUIT [131]

Answer:

Explanation:

To find out the angular velocity of merry-go-round after person jumps on it , we shall apply law of conservation of ANGULAR momentum

I₁ ω₁ + I₂ ω₂ = ( I₁  + I₂ ) ω

I₁ is moment of inertia of disk , I₂ moment of inertia of running person , I is the moment of inertia of disk -man system , ω₁ and ω₂ are angular velocity of disc and man .

I₁ = 1/2 mr²

= .5 x 175 x 2.13²

= 396.97 kgm²

I₂ = m r²

= 55.4 x 2.13²

= 251.34 mgm²

ω₁ = .651 rev /s

= .651 x 2π rad /s

ω₂ = tangential velocity of man / radius of disc

= 3.51 / 2.13

= 1.65 rad/s

I₁ ω₁ + I₂ ω₂ = ( I₁  + I₂ ) ω

396.97 x  .651 x 2π + 251.34 x 1.65 = ( 396.97 + 251.34 ) ω

ω = 3.14 rad /s

kinetic energy = 1/2 I ω²

= 3196 J

8 0
3 years ago
True or false? If two components are connected in series, the current through one component will
Molodets [167]

the answer is ( True ) .

the current is the same in series circuits .

8 0
3 years ago
Please help! Will give brainliest. 
I am Lyosha [343]

<span>The correct frequency when you tune a guitar is when you hear the right tune in your own hearing and standard. The measure frequency of a guitar string is when you measure the tune of the string correctly. This is not the same because manual tuning is affected by many factors.</span>

9 0
3 years ago
The main illustration in the video shows the life track of a one-solar mass star. Each point along this track represents _______
REY [17]

Each point along the track of one solar mass star represents the star's surface temperature and luminosity at one time.

<h3>What is the one-solar mass star?</h3>

A star having a mass equal to the mass of the Sun is called a one-solar mass star.

Its life track shows the luminous intensity as well as the surface temperature.

Learn more about one-solar mass star.

brainly.com/question/14984575

#SPJ1

7 0
2 years ago
Other questions:
  • What is the wavelength of a wave that has a speed of 3 km/s and a frequency of 12 Hz? A. 36 km B. 3.6 km C. 0.25 km D. 4 km
    11·1 answer
  • The following represents a mass attached to a spring oscillating in simple harmonic motion. X(t) = 4.0 cos(3.0t +0.10) units of
    5·1 answer
  • The milky way galaxy is the galaxy that is closest to us contains the most stars is farthest from us contains our solar system
    5·1 answer
  • Converging warm winds over warm ocean waters are the starting point for which of the following?
    7·2 answers
  • For a rigid body in rotational motion, what can be stated about the angular velocity of all of the particles? The linear velocit
    9·1 answer
  • What can electricty from solar power be used for​
    14·1 answer
  • At the beginning of 2016, robotics inc. acquired a manufacturing facility for $13.1 million. $10.1 million of the purchase price
    11·1 answer
  • How is motion converted to math
    10·1 answer
  • What is the relationship between the mass of the objects and the force exerted?
    8·1 answer
  • Help me please I will thank you​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!