Answer:
Zero
Explanation:
Net force can be defined as the vector sum of all the forces acting on a body or an object i.e the sum of all forces acting simultaneously on a body or an object.
Mathematically, net force is given by the formula;
Where;
Fnet is the net force.
Fapp is the applied force.
Fg is the force due to gravitation.
In this scenario, a stalled car is being pushed up a hill at constant velocity by three people. Thus, the net force on the car is zero because all the forces acting on any physical object is equal to zero and represents a constant velocity; by balancing or cancelling each other out.
According to Sir Isaac Newton's First Law of Motion which is known as Law of Inertia, it states that an object or a physical body in motion will continue in its state of motion at continuous velocity (the same speed and direction) or, if at rest, will remain at rest unless acted upon by an external force.
Kinetic energy = (1/2) (mass) (speed²).
A Physicist in the canoe, or on a raft floating downriver next to the canoe, will say that the canoe's kinetic energy is zero.
A Physicist on the riverbank, watching the canoe drift by at 1 m/s, will say that its kinetic energy is 9 Joules.
They're both correct.
Answer:
inverse square relationship
Explanation:
Both the Newton's law of universal gravitation and coulomb's law have their force inversely proportion to the square of the distance between the bodies.
Answer:
Explanation:
The frequency equation for waves is
where f is the frequency, v is the velocity, and lambda is the wavelength. Filling in:
so
v = .26(25) and
v = 6.5 meters/second
Answer:
The temperature reported by a thermometer is never precisely the same as its surroundings
Explanation:
In this experiment to determine the specific heat of a material the theory explains that when a heat interchange takes place between two bodies that were having different temperatures at the start, the quantity of heat the warmer body looses is equal to that gained by the cooler body to reach the equilibrium temperature. <u>This is true only if no heat is lost or gained from the surrounding.</u> If heat is gained or lost from the surrounding environment, the temperature readings by the thermometer will be incorrect. The experimenter should therefore keep in mind that for accurate results, the temperature recorded by the thermometer is similar to that of the surrounding at the start of the experiment and if it differs then note that there is either heat gained or lost to the environment.