Complete question is;
Jason works for a moving company. A 75 kg wooden crate is sitting on the wooden ramp of his truck; the ramp is angled at 11°.
What is the magnitude of the force, directed parallel to the ramp, that he needs to exert on the crate to get it to start moving UP the ramp?
Answer:
F = 501.5 N
Explanation:
We are given;
Mass of wooden crate; m = 75 kg
Angle of ramp; θ = 11°
Now, for the wooden crate to slide upwards, it means that the force of friction would be acting in an opposite to the slide along the inclined plane. Thus, the force will be given by;
F = mgsin θ + μmg cos θ
From online values, coefficient of friction between wooden surfaces is μ = 0.5
Thus;
F = (75 × 9.81 × sin 11) + (0.5 × 75 × 9.81 × cos 11)
F = 501.5 N
Answer:
xjsjsiaiwdjajajqjiwjwjeueie
<h2>
Answer:g=9.79
,A object of mass

at the surface of earth experiences a force

</h2>
Explanation:
Let
be the mass of earth.
Let
be the radius of earth.
Let
be the universal gravitational constant.
Given,




Let
be the acceleration due to gravity.
Then,


A object of mass
at the surface of earth experiences a force 
The relation between temperature and pressure is called the "equation of state of the gas". or "Hydrostatic equilibrium in ordinary star". Take for example a balloon, it will have a larger spherical shape, if the pressure inside exerted by the gas on a wall of a balloon balance the inward force exerted by the outside atmospheric pressure. In a dying star which is being compressed by gravity, the gas is being squeezed so the molecules is moving rapidly, resulting to a very high temperature, and this provide a balance that counteract or balances the compressive force of gravity. The very high temperature inside the star is needed to balance the force of gravity, and it is provide by "nuclear fusion energy" or else the star would collapse under the force of gravity. Depending on the size or mass of the star, it will either become, a "neutron star" or a "black hole".
Answer:
The maximum mass the bar can support without yielding = 32408.26 kg
Explanation:
Yield stress of the material (
) = 200 M Pa
Diameter of the bar = 4.5 cm = 45 mm
We know that yield stress of the bar is given by the formula
Yield Stress = 
⇒
=
---------------- (1)
⇒ Area of the bar (A) =
×
⇒ A =
× 
⇒ A = 1589.625 
Put all the values in equation (1) we get
⇒
= 200 × 1589.625
⇒
= 317925 N
In this bar the
is equal to the weight of the bar.
⇒
=
× g
Where
is the maximum mass the bar can support.
⇒
= 
Put all the values in the above formula we get
⇒
= 
⇒
= 32408.26 Kg
There fore the maximum mass the bar can support without yielding = 32408.26 kg