Answer:
The weight of the wheelbarrow and the road is 784 N and the force required to lift the wheelbarrow is 784 N.
Explanation:
Given that,
The total mass of the wheelbarrow and the road is 80 kg.
The weight of an object is given by :
W = mg
where
g is acceleration due to gravity
So,
W = 80 × 9.8
= 784 N
So, the force required to lift the wheelbarrow is equal to its weight i.e. 784 N.
The smallest level of organization in living things is the atom.
Next in line would be the cell, since a cell is made up of atoms working together. Next, cells working together would make up a tissue, and further, tissues working together would make up an organ.
Answer:

Explanation:
As we know by the principle of uncertainty that the product of uncertainty in position and uncertainty in momentum is given as

so here we know that


so we have


Newtons First Law of Motion:
An object at rest stays at rest and an object in motion<span> stays in </span>motion <span>with the same speed and in the same direction unless acted upon by an unbalanced force.</span>
Therefore, the relationship between force and motion is that it takes force to change the speed or direction of any object in motion.
Answer:
Stretch can be obtained using the Elastic potential energy formula.
The expression to find the stretch (x) is 
Explanation:
Given:
Elastic potential energy (EPE) of the spring mass system and the spring constant (k) are given.
To find: Elongation in the spring (x).
We can find the elongation or stretch of the spring using the formula for Elastic Potential Energy (EPE).
The formula to find EPE is given as:

Rewriting the above expression in terms of 'x', we get:

Example:
If EPE = 100 J and spring constant, k = 2 N/m.
Elongation or stretch is given as:

Therefore, the stretch in the spring is 10 m.
So, stretch in the spring can be calculated using the formula for Elastic Potential Energy.