Answer:
0.786 Hz, 1.572 Hz, 2.358 Hz, 3.144 Hz
Explanation:
The fundamental frequency of a standing wave on a string is given by

where
L is the length of the string
T is the tension in the string
is the mass per unit length
For the string in the problem,
L = 30.0 m

T = 20.0 N
Substituting into the equation, we find the fundamental frequency:

The next frequencies (harmonics) are given by

with n being an integer number and f being the fundamental frequency.
So we get:



Force is the product of mass and acceleration .
The question is ask to find acceleration.
But acceleration is the ratio of the force and the mass.
where 600kg is the mass and 7kN is the force
NB: kilo is 1000
now we have to multiply 7N by 1000
by doing so you will have 7000N
which is the force.
Now to find the acceleration: force/ mass
which is 7000/600
therefore the maximum acceleration is 11.667
The correct answer is:
<span>C: in the protons and neutrons of an atom
In fact, the nuclear energy refers to the binding energy of the nucleons (protons and neutrons) of an atom. The protons and the neutrons are held together by the strong nuclear interaction, one of the four fundamental forces of nature, and the energy associated to this interaction is called nuclear energy.
</span>
I’m pretty sure u have it right