Answer:
a) 
b) 
c) 
d)
would be the same.
would decrease.
would be the same.
Explanation:
a) On an inclined plane the force of gravity is the sine component of the weight of the block.

b) The friction force is equal to the normal force times coefficient of friction.

c) The work done by the normal force is zero, since there is no motion in the direction of the normal force.
d) The relation between the vertical height and the distance on the ramp is

According to this relation, the work done by the gravity wouldn't change, since the force of gravity includes a term of
.
The work done by the friction force would decrease, because both the cosine term and the distance on the ramp would decline.
The work done by the normal force would still be zero.
If friction is acting along the plane upwards
then in this case we will have
For equilibrium of 100 kg box on inclined plane we have

also for other side of hanging mass we have

now we have




In other case we can assume that friction will act along the plane downwards
so now in that case we will have

also we have

now we have





<em>So the range of angle will be 23.45 degree to 37 degree</em>
-- In a series circuit, the current ( I ) is the same at every point.
-- The power dissipated by any section of the circuit is I² x Resistance.
-- The wire has very low resistance, so I²R is very low dissipated power.
-- The filament in the bulb has most all of the resistance in the circuit,
so it dissipates virtually all the power of the circuit, and certainly much
more than the wires do.
Answer:
Kinetic energy = 35840 Joules
Explanation:
Given the following data;
Mass = 70kg
Velocity = 32m/s
To find the kinetic energy;
Kinetic energy can be defined as an energy possessed by an object or body due to its motion.
Mathematically, kinetic energy is given by the formula;

Where, K.E represents kinetic energy measured in Joules.
M represents mass measured in kilograms.
V represents velocity measured in metres per seconds square.

Substituting into the equation, we have;



K.E = 35840 Joules.
Therefore, the kinetic energy possessed by the cheetah is 35840 Joules.
Answer:
A. The number of valence electrons increases by 1.
Explanation:
As you move across any period on the periodic table, the number of valence electrons increases by a value of 1.
- The periodic table of elements contains an arrangement of element by their atomic numbers.
- From left to right, number of valence electrons increases.
- Down a group, the valence electrons are the same.
- Across a period, the number of valence electrons increases.