The fundamental frequency of this open-open pipe is 8.82 Hz
The quantity of waves that pass a set location in a predetermined period of time is known as frequency. Frequency is the number of full cycles per second in the alternating current direction for an oscillating or fluctuating current. The hertz, also known as Hz, is the accepted unit of frequency.
The temporal rate of change observed in oscillatory and periodic phenomena, such as mechanical vibrations, audio signals (sound), radio waves, and light, is specified by the frequency, an essential parameter in science and engineering.
Assume vs = 344 m/s
f1 = vs/2L
= 344 m/s/ 2∙64 ft/(3.281 ft/m)
= 8.82 Hz
To know more about Frequency refer:
brainly.com/question/14131991
#SPJ4
It would last as long as the applied force continued, or until the accelerating object hit something.
Answer:
A) B = 24 ft
B) H = 24.08 ft
C) M.A = 12.04
D) P = 13.7 lb
Explanation:
A)
Minimum allowable length of base of ramp can be found as follows:
Slope = H/B
where,
Slope = 1/12
H = Height of Ramp = 2 ft
B = Length of Base of Ramp = ?
Therefore,
1/12 = 2 ft/B
B = 2 ft * 12
<u>B = 24 ft</u>
B)
The length of the slope of ramp can be found by using pythagora's theorem:
L = √H² + B²
where,
H = Perpendicular = height = 2 ft
B = Base = Length of Base of Ramp = 24 ft
L = Hypotenuse = Length of Slope of Ramp = ?
Therefore,
H = √[(2 ft)² + (24 ft)²]
<u>H = 24.08 ft</u>
D)
The mechanical advantage of an inclined plane is given by the following formula:
M.A = L/H
M.A = 24.08 ft/2 ft
<u>M.A = 12.04</u>
D)
Another general formula for Mechanical Advantage is:
M.A = W/P
where,
W = Ideal Load = 165 lb
P = Ideal Effort Force = ?
Therefore,
12.04 = 165 lb/P
P = 165 lb/12.04
<u>P = 13.7 lb</u>