Answer:
<h2>a) Time elapsed before the bullet hits the ground is 0.553 seconds.</h2><h2>b)
The bullet travels horizontally 110.6 m</h2>
Explanation:
a) Consider the vertical motion of bullet
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Displacement, s = 1.5 m
Substituting
s = ut + 0.5 at²
1.5 = 0 x t + 0.5 x 9.81 xt²
t = 0.553 s
Time elapsed before the bullet hits the ground is 0.553 seconds.
b) Consider the horizontal motion of bullet
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 200 m/s
Acceleration, a = 0 m/s²
Time, t = 0.553 s
Substituting
s = ut + 0.5 at²
s = 200 x 0.553 + 0.5 x 0 x 0.553²
s = 110.6 m
The bullet travels horizontally 110.6 m
Answer:
The answer is "a, c and b"
Explanation:
- Its total block power is equal to the amount of potential energy and kinetic energy.
- Because the original block expansion in all situations will be the same, its potential power in all cases is the same.
- Because the block in the first case has no initial speed, the block has zero film energy.
- For both the second example, it also has the
velocity, but the kinetic energy is higher among the three because its potential and kinetic energy are higher. - While over the last case the kinetic speed is greater and lower than in the first case, the total energy is also higher than the first lower than that of the second.
- The greater the amplitude was its greater the total energy, therefore lower the second, during the first case the higher the amplitude.
If <em>the isotherms</em> are spaced closely together over some portion of the map, there is a drastic temperature change over that portion.
Static Friction
It is the friction that exists between a stationary object and the surface on which it's resting.
Sliding friction
It is the resistance created by two objects sliding against each other.
Rolling friction:-
It is the force resisting the motion when a body rolls on a surface.
hope this helps x
Answer:
1 micron = 1.00E-6 m is one way
1.00^-6 m is another but is not usually considered scientific notation, but
often convenient to use.