Answer:
Explanation:
e. At the right edge of the beam
Check attachment for other solution
Answer: the higher the kinetic energy
Explanation:
Answer:
The capillary rise of the glycerin is most nearly 
Explanation:
From the question we are told that
The diameter of the glass tube is 
The density of glycerin is 
The surface tension of the glycerin is 
The capillary rise of the glycerin is mathematically represented as

substituting value


Therefore the height of the glass tube the glycerin was able to cover is
Answer:External forces are forces caused by external agent outside of the system. Internal forces are forces exchanged by the objects in the system.
Explanation:or our purposes, we will simply say that external forces include the applied force, normal force, tension force, friction force, and air resistance force. And for our purposes, the internal forces include the gravity forces, magnetic force, electrical force, and spring force.HOPE THIS HELPS!!! ^w^
Answer:
The torque applied by the drill bit is T = 16.2 Nm and the cutting force of the drill bit is F = 33 N.
Explanation:
Given:-
- The diameter of the drill bit, d = 98 cm
- The power at which drill works, P = 5.85 hp
- The rotational speed of drill, N = 1900 rpm
Find:-
What Torque And Force Is Applied To The Drill Bit?
Solution:-
- The amount of torque (T) generated at the periphery of the cutting edges of the drilling bit when it is driven at a power of (P) horsepower at some rotational speed (N).
- The relation between these quantities is given:
T = 5252*P / N
T = 5252*5.85 / 1900
T = 16.171 Nm
- The force (F) applied at the periphery of the drill bit cutting edge at a distance of radius from the center of drill bit can be determined from the definition of Torque (T) being a cross product of the Force (F) and a moment arm (r):
T = F*r
Where, r = d / 2
F = 2T / d
F = 2*16.171 / 0.98
F = 33 N
Answer: The torque applied by the drill bit is T = 16.2 Nm and the cutting force of the drill bit is F = 33 N.