Answer:
Water > Box of books > Stone > Ball
Explanation:
We'll begin by calculating the potential energy of each object. This can be obtained as follow:
For stone:
Mass (m) = 15 Kg
Acceleration due to gravity (g) = 10 m/s²
Height (h) = 3 m
Potential energy (PE) =?
PE = mgh
PE = 15 × 10 × 3
PE = 450 J
For water:
Mass (m) = 10 Kg
Acceleration due to gravity (g) = 10 m/s²
Height (h) = 9 m
Potential energy (PE) =?
PE = mgh
PE = 10 × 10 × 9
PE = 900 J
For ball:
Mass (m) = 1 Kg
Acceleration due to gravity (g) = 10 m/s²
Height (h) = 20 m
Potential energy (PE) =?
PE = mgh
PE = 1 × 10 × 20
PE = 200 J
For box of books:
Mass (m) = 25 Kg
Acceleration due to gravity (g) = 10 m/s²
Height (h) = 2 m
Potential energy (PE) =?
PE = mgh
PE = 25 × 10 × 2
PE = 500 J
Summary:
Object >>>>>>>> Potential energy
Stone >>>>>>>>> 450 J
Water >>>>>>>>> 900 J
Ball >>>>>>>>>>> 200 J
Box of books >>> 500 J
Arranging from greatest to least, we have:
Object >>>>>>>> Potential energy
Water >>>>>>>>> 900 J
Box of books >>> 500 J
Stone >>>>>>>>> 450 J
Ball >>>>>>>>>>> 200 J
Water > Box of books > Stone > Ball
Answer:
a. Planets move on elliptical orbits with the Sun at one focus.
Explanation:
Johannes Kepler was an astronomer who discovered that planets had elliptical orbits in the early 1600s (between 1609 and 1619).
The three (3) laws published by Kepler include;
I. The first law of planetary motion by Kepler states that, all the planets move in elliptical orbits around the Sun at a focus.
II. According to Kepler's second law of planetary motion, the speed of a planet is greatest when it is closest to the Sun.
Thus, the nearer (closer) a planet is to the Sun, the stronger would be the gravitational pull of the sun on the planet and consequently, the faster is the speed of the planet in terms motion.
III. The square of any planetary body's orbital period (P) is directly proportional to the cube of its orbit's semi-major axis.
Hence, one of Kepler's laws of planetary motion states that planets move on elliptical orbits with the Sun at one focus. This is his first law of planetary motion.
Answer:
Mass
Explanation:
The mass of an object expresses the amount of matter it comprises. Which implies that objects with higher mass contains higher matter compared to objects with lesser masses. Thereby it determines the measure of inertia experienced by an object when a force is applied to change its direction of motion, or to set it in motion when at rest, or bring it to rest when in motion.
The mass of an object the same no matter its location, and it is measured in kilograms.
-- Electric field lines DO never cross. <em>(A)
</em>
-- Electric field lines that are close together DO indicate a stronger electric field. <em>(B)
</em>
-- Electric field lines DO not affect the charge that created them. <em>(C)</em>
-- Electric field lines DON'T begin on north poles and end on south poles. North and South "poles" are the way we talk about magnets, not electric charges.