Fermat's little theorem states that

≡a mod p
If we divide both sides by a, then

≡1 mod p
=>

≡1 mod 17

≡1 mod 17
Rewrite

mod 17 as

mod 17
and apply Fermat's little theorem

mod 17
=>

mod 17
So we conclude that

≡1 mod 17
Answer:
Step-by-step explanation:
The given piecewise function i
From the given function it is clear that function is divided at x=-1 and x=2. It means we check the discontinuity at x=-1 and x=2.
For x=-1,
LHL:
Since LHL ≠ f(-1), therefore the given function is discontinuous at x=-1.
For x=2,
LHL:
Since LHL ≠ f(2), therefore the given function is discontinuous at x=2.
Therefore, the correct option is A.
Answer:
x = -1
x = 3
Step-by-step explanation:

Add 1 to both sides:

Factor the left side:

Square root both sides:

Therefore:


Answer:
D
The numbers are already in order so you don't need to do anything