1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nady [450]
2 years ago
6

Which statement about moons is incorrect?

Physics
2 answers:
mestny [16]2 years ago
5 0
Moons never have an atmosphere.
Liono4ka [1.6K]2 years ago
5 0
The obvious question is B
You might be interested in
Which adaptation is likely to increase the chances of survival of an animal in a rainforest?
34kurt
Black-spotted skin coat as camouflage while stalking prey.
Survival = avoiding predators or capturing prey successfully
6 0
3 years ago
Read 2 more answers
An airplane is moving at 350 km/hr. If a bomb is
Molodets [167]

Answers:

a) -171.402 m/s

b) 17.49 s

c) 1700.99 m

Explanation:

We can solve this problem with the following equations:

y=y_{o}+V_{oy}t-\frac{1}{2}gt^{2} (1)

x=V_{ox}t (2)

V_{f}=V_{oy}-gt (3)

Where:

y=0 m is the bomb's final jeight

y_{o}=1.5 km \frac{1000 m}{1 km}=1500 m is the bomb'e initial height

V_{oy}=0 m/s is the bomb's initial vertical velocity, since the airplane was moving horizontally

t is the time

g=9.8 m/s^{2} is the acceleration due gravity

x is the bomb's range

V_{ox}=350 \frac{km}{h} \frac{1000 m}{1 km} \frac{1 h}{3600 s}=97.22 m/s is the bomb's initial horizontal velocity

V_{f} is the bomb's fina velocity

Knowing this, let's begin with the answers:

<h3>b) Time</h3>

With the conditions given above, equation (1) is now written as:

y_{o}=\frac{1}{2}gt^{2} (4)

Isolating t:

t=\sqrt{\frac{2 y_{o}}{g}} (5)

t=\sqrt{\frac{2 (1500 m)}{9.8 m/s^{2}}} (6)

t=17.49 s (7)

<h3>a) Final velocity</h3>

Since V_{oy}=0 m/s, equation (3) is written as:

V_{f}=-gt (8)

V_{f}=-(97.22)(17.49 s) (9)

V_{f}=-171.402 m/s (10) The negative sign ony indicates the direction is downwards

<h3>c) Range</h3>

Substituting (7) in (2):

x=(97.22 m/s)(17.49 s) (11)

x=1700.99 m (12)

5 0
3 years ago
Ten students stand in a circle and are told to make a transverse wave. What best describes the motion of the students? Each stud
Bond [772]

Lifting hands and the down by one student at a time best describe the presentation of the transverse wave by students. Option D is correct.

<h3>What is a Transverse wave?</h3>
  • The wave in which the oscillation of particles is is perpendicular to the direction of energy transfer.

  • The students can make a transverse wave by raising their hands up and then down, one student at a time.

  • The raised hand represents the oscillation of particles while the sequence of the raising hand represents the direction of energy transfer.

Therefore, lifting hands and the down by one student at a time best describe the presentation of the transverse wave by students.

Learn more about Transverse waves:  

brainly.com/question/3813804

3 0
2 years ago
Read 2 more answers
How do I solve this​
Svetradugi [14.3K]

Answer:

W = 8.01 × 10^(-17) [J]

Explanation:

To solve this problem we need to know the electron is a subatomic particle with a negative elementary electrical charge (-1,602 × 10-19 C), The expression to calculate the work is given by:

W = q*V

where:

q = charge = 1,602 × 10^(-19) [C]

V = voltage = 500 [V]

W = work [J]

W = 1,602 × 10^(-19) * 500

W = 8.01 × 10^(-17) [J]

8 0
3 years ago
A baseball pitcher throws a ball horizontally at a speed of 34.0 m/s. A catcher is 18.6 m away from the pitcher. Find the magnit
Sidana [21]

To develop this problem, it is necessary to apply the concepts related to the description of the movement through the kinematic trajectory equations, which include displacement, velocity and acceleration.

The trajectory equation from the motion kinematic equations is given by

y = \frac{1}{2} at^2+v_0t+y_0

Where,

a = acceleration

t = time

v_0 = Initial velocity

y_0 = initial position

In addition to this we know that speed, speed is the change of position in relation to time. So

v = \frac{x}{t}

x = Displacement

t = time

With the data we have we can find the time as well

v = \frac{x}{t}

t = \frac{x}{v}

t = \frac{18.6}{34}

t = 0.547s

With the equation of motion and considering that we have no initial position, that the initial velocity is also zero then and that the acceleration is gravity,

y = \frac{1}{2} at^2+v_0t+y_0

y = \frac{1}{2} gt^2+0+0

y = \frac{1}{2} gt^2

y = \frac{1}{2} 9.8*0.547^2

y = 1.46m

Therefore the vertical distance that the ball drops as it moves from the pitcher to the catcher is 1.46m.

6 0
3 years ago
Other questions:
  • A compact disc has a radius of 6 centimeters.
    9·2 answers
  • Please answer as soon as possible. <br><br> A Physics question about electricity and circuits.
    11·1 answer
  • Most problems addressed by the technological design process have only one solution true/false
    9·2 answers
  • A compression wave of gas, liquid, or solid, that is detected by your ear.
    15·2 answers
  • In this experiment, the ______ was intentionally manipulated. This was the independent variable.
    11·1 answer
  • Car A has a mass of 2000 kg and is going 28 m/s east.
    15·1 answer
  • Escoge la mejor respuesta:
    12·1 answer
  • MARKING BRAINLIEST!!! NOOOOOOOOOOOO LINKS OR I WILLLLLLLLL REPORT YOU!
    7·2 answers
  • A bicycle has a momentum of 50.00 kg·m/s and a velocity of 5.0 m/s. What is the bicycle’s mass?
    7·1 answer
  • The radius of a lead atom is 175 pm. how many lead atoms would have to be laid side by side to span a distance of 6.11 mm?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!