Answer:
A-Caclcuate the potential energy of the ball at that height
Explanation:
(a). Mass of the Body = 10 kg.
Height = 10 m.
Acceleration due to gravity = 9.8 m/s².
Using the Formula,Potential Energy = mgh
= 10 × 9.8 × 10 = 980 J.
(b). Now, By the law of the conservation of the Energy, Total amount of the energy of the system remains constant.
∴ Kinetic Energy before the body reaches the ground is equal to the Potential Energy at the height of 10 m.
∴ Kinetic Energy = 980 J.
(c). Kinetic Energy = 980 J.
Mass of the ball = 10 kg.
∵ K.E. = 1/2 × mv²
∴ 980 = 1/2 × 10 × v²
∴ v² = 980/5
⇒ v² = 196
∴ v = 14 m/s.
I have the exact same question, any chance you figured it out since you posted this?
The acceleration of the car would be 0.33 first and then it would be 0.17.
<u>Explanation:</u>
An applied force is a force that is applied to an object by an individual or another item. On the off chance that an individual is pushing a work area over the room, at that point there is an applied power following up on the article. The applied power is the power applied on the work area by the individual.
The net force applied to the object rises to the mass of the article increased by the measure of its acceleration. The net power following up on the soccer ball is equivalent to the mass of the soccer ball duplicated by its adjustment in speed each second (its acceleration).
Alpha particles are composite particles consisting of two protons and two neutrons tightly bound together.
(not much explanation, I hope this is what you were looking for!)
To solve this problem we will apply the concepts related to the potential, defined from the Coulomb laws for which it is defined as the product between the Coulomb constant and the load, over the distance that separates the two objects. Mathematically this is

k = Coulomb's constant
q = Charge
r = Distance between them


Replacing,



Therefore the potential at the surface of the raindrop is 135 V