Answer:
599 meters is the answer rounded to the nearest whole number and 599.489795918 meters is the complete answer
Explanation:
to find gravitational potential energy you multiply mass x acceleration due to gravity (always 9.8 on earth) x hight
since we know the gravitational potential energy and want to find out the hight, we take the gravitational potential energy (470,000) and divide it by the product of acceleration due to gravity x mass (9.8 x 80)
so how high the hiker climbed is equal to 470,000 divided by (9.8 x 80)
hight = 470,000 / (9.8 x 80)
hight = 470,000 / 784
hight = 599.489795918 meters
as for rounding, if the decimal is less than 5 you round "down" and keep the current whole number, if the decimal is 5 or greater you round "up" and add 1 to get your new number
Answer:5.7m/s
Explanation:
Mass=1kg
Initial velocity=u=8m/s
height=h=1.6m
Final velocity =v
Acceleration due to gravity=g=9.8m/s^2
v^2=u^2-2xgxh
v^2=8^2-2x9.8x1.6
v^2=8x8-2x9.8x1.6
v^2=64-31.36
v^2=32.64
Take the square root of both sides
√(v^2)=√(32.64)
v=5.7
Speed at the height of 1.6m is 5.7m/s
Answer:
A wheel and axle may either increase or decrease the input force, depending on whether the input force is applied to the axle or the wheel. ... Because the output force is less than the input force, the mechanical advantage is less than 1. However, the wheel turns over a greater distance, so it turns faster than the axle.
If you apply a force to the wheel (the handle), the wheel spins and multiplies the effort to make the output force of the axle (shaft) greater.
The drive shaft, which on most cars runs the length of the vehicle to the rear wheels, turns as the combustion engine burns gasoline. The turning drive shaft sends power to the rear axle and wheels, which cause them to turn as well, moving the car forward
There some moments when the steering wheel becomes stiff and hard to turn. From irregular servicing, lack of fluid oil to low tyre pressure or bad wheel alignment, any of these could be the cause
hope it helps plz Mark me brainliest :)
Answer:
The correct answers are a and d
Explanation:
In this experiment it can be analyzed using Newton's second law
F = m a
m = F / m
The outside is supplied by the spring balance and is constant, therefore the acceleration of the system is also constant.
The acceleration can be found with the kinematic equations
x = v t + ½ a t²
As we start from rest the initial speed is zero
a = 2 x / t²
Therefore we need the reading of position and time.
Finally, the relationship between the balance reading and this acceleration of the mass of the system
Let's analyze the answers
a) True. It is one of the necessary quantities
b) False. With the equipment we cannot measure the speed directly
c) false. Acceleration is calculated
d) true. It is the other magnitude necessary for the calculation.
The correct answers are a and d