Answer
By F = -kx {-ve just indicating the sign of the force}
=>35 = k x (85-50) x 10^-2
=>k = 100 N/m
Again by F = -kx
Answer:
3/10 F.
Explanation:
Height ( h ) = 1m
Time taken ( t ) = 0.1 second
Height² ( h² ) = 9m
Time taken² ( t² ) = 1 second
Solution,
F = ma
= m ( v - u ) / t
= m √2gh / t
now,
F/F² = √h/h² × t/t²
F¹ = 3/10 F.
answer !!
The coefficient of static friction is 0.222
Explanation:
In order for the car to remain in circular motion, the frictional force must be able to provide the necessary centripetal force. Therefore, the car will start skidding when the two forces are equal:

where the term on the left is the frictional force, while the term on the right is the centripetal force, and where
is the coefficient of static friction
m is the mass of the car
g is the acceleration of gravity
v is the speed of the car
r is the radius of the track
In this problem, we have:
r = 564 m
v = 35 m/s

And re-arranging the equation for
, we can find the coefficient of static friction:

Learn more about friction:
brainly.com/question/6217246
brainly.com/question/5884009
brainly.com/question/3017271
brainly.com/question/2235246
#LearnwithBrainly
C. The higher the altitude the less gravity affects you
Explanation:
The attached figure shows data for the cart speed, distance and time.
For low fan speed,
Distance, d = 500 cm
Time, t = 7.4 s
Average velocity,

Acceleration,

For medium fan speed,
Distance, d = 500 cm
Time, t = 6.4 s
Average velocity,

Acceleration,

For high fan speed,
Distance, d = 500 cm
Time, t = 5.6 s
Average velocity,

Acceleration,

Hence, this is the required solution.