Answer:
11.66 L.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- If P and T are constant, and have different values of n and V:
<em>(V₁n₂) = (V₂n₁).</em>
V₁ = 25.5 L, n₁ = 3.5 mol.
V₂ = ??? L, n₂ = 3.5 mol - 1.9 mol = 1.6 mol.
<em>∴ V₂ = (V₁n₂)/(n₁)</em> = (25.5 L)(1.6 mol)/(3.5 mol) =<em> 11.66 L.</em>
Answer:
It is not a gas because its particles do not have large space between them.
To explain your first paragraph which includes your thesis. The second paragrph supports your first pragraph
Answer:
The Law of Conservation of Mass states that mass is neither created nor destroyed in chemical reactions. Since the number and type of atoms in the reactant side of the chemical equation are the same as on the product side, the Law of Conservation of Mass has been demonstrated.
Explanation:
In the answer.
Your answer should be C.) +2. "All the elements in Group 2 have two electrons in their valence shells, giving them an oxidation state of +2."
Credits: https://chem.libretexts.org/Core/Inorganic_Chemistry/Descriptive_Chemistry/Elements_Organized_by_Blo...
Hopefully this has helped! :)