Answer:
the mass of CaO present at equilibrium is, 0.01652g
Explanation:
= 3.8×10⁻²
Now we have to calculate the moles of CO₂
Using ideal gas equation,
PV =nRT
P = pressure of gas = 3.8×10⁻²
T = temperature of gas = 1000 K
V = volume of gas = 0.638 L
n = number of moles of gas = ?
R = gas constant = 0.0821 L.atm/mole.k

Now we have to calculate the mass of CaO
mass = 2.95 * 10 ⁻⁴ × 56
= 0.01652g
Therefore,
the mass of CaO present at equilibrium is, 0.01652g
Answer:
ICI 204448 hydrochloride | C23H27Cl3N2O4 | CID 129407 - structure, chemical names, physical and chemical properties, classification, patents, literature, etc...
hope this helps!! have an amazing day <3
Shape
A gas is shapeless all other things being equal. It will, if put in a container, occupy every part of the container.
A liquid could also be thought of shapeless. If put in a container, it need not occupy the entire container. It will occupy as much as its calculated volume will permit it to occupy.
A solid will only occupy its original shape.
Volume
A gas will occupy whatever container it is put in within limits. You cannot put a 72 mols of gas in a mm^3 container without some amazing ability to apply a lot of pressure.
A liquid will occupy a volume determined by its density and mass. In general liquids cannot be compressed.
Whatever volume a solid has to start with, it will retain that volume all other things being equal.
This is actually very hard to describe.
Answer:
The correct answer is: K'= 0.033.
Explanation:
The formation of HI from H₂ and I₂ is given by:
H₂ + I₂ → 2 HI K= 29.9
The decomposition of HI is the reverse reaction of the formation of HI:
2 HI → H₂ + I₂ K'
Thus, K' is the equilibrium constant for the reverse reaction of formation of HI. It is calculated as the reciprocal of the equilibrium constant of the forward reaction (K):
K' = 1/K = 1/(29.9)= 0.033
Therefore, the equilibrium constant for the decomposition of HI is K'= 0.033
The answer should be C. I dont know know if you have misspellings or not