Answer:
Empirical CHO2
Molecular C2H2O4
Explanation:
To determine the formulas, firstly, we need to divide the percentage compositions by the atomic masses.
Kindly note that the atomic mass of carbon, oxygen and hydrogen are 12, 16 and 1 respectively. We proceed with the division as follows:
C = 26.7/12 = 2.225
H = 2.2/1 = 2.2
O = 71.1/16 = 4.44375
We then proceed to divide by the smallest value which is 2.2 in this case
C = 2.25/2.2 = 1
H = 2.2/2.2 = 1
O = 4.44375/2.2 = 2
Thus, the empirical formula is CHO2
We now proceed to get the molecular formula as follows
[12+ 1 + 16(2) ]n = 90.04
45n = 90.04
n = 90.04/45 = 2
The molecular formula is :
C2H2O4
The electrons begin at the lowest level, and then fills up until it reaches the highest level, and completely fills the outer shell.
Answer:
I think it's C
Explanation:
i think its c b3cause when you guess c always feels right
Answer:
-3.82ºC is the freezing point of solution
Explanation:
We work with the Freezing point depression to solve the problem
ΔT = m . Kf . i
ΔT = Freezing point of pure solvent - freezing point of solution
Let's find out m, molality (moles of solute in 1kg of solvent)
15 g / 58.45 g/mol = 0.257 moles of NaCl
NaCl(s) → Na⁺ (aq) + Cl⁻(aq)
i = 2 (Van't Hoff factor, numbers of ions dissolved)
m = mol /kg → 0.257 mol / 0.250kg = 1.03 m
Kf = Cryoscopic constant → 1.86 ºC/m (pure, for water)
0ºC - Tºf = 1.03m . 1.86ºC/m . 2
Tºf = -3.82ºC
Answer:
(b) Trigonal planar
Explanation:
The molecular geometry is the one that stabilizes better the bonds and the free electron pairs. If the molecule is nonpolar (overall dipole moment zero), so, there's no free electron pairs at the central atom. So, the molecule has the central atom A surrounded by three atoms of B, which is the trigonal planar geometry.