1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dimulka [17.4K]
3 years ago
11

Water vapor at 10bar, 360°C enters a turbine operatingat steady state with a volumetric flow rate of 0.8m3/s and expandsadiabati

cally to an exit state of 1 bar, 160°C. Kinetic and potentialenergy effects are negligible. Determine for the turbine (a) the powerdeveloped, in kW, (b) the rate of entropy production, in kW/K, and (c)the isentropic turbine efficiency

Engineering
1 answer:
Artyom0805 [142]3 years ago
8 0

Answer:

A) W' = 178.568 KW

B) ΔS = 2.6367 KW/k

C) η = 0.3

Explanation:

We are given;

Temperature at state 1;T1 = 360 °C

Temperature at state 2;T2 = 160 °C

Pressure at state 1;P1 = 10 bar

Pressure at State 2;P2 = 1 bar

Volumetric flow rate;V' = 0.8 m³/s

A) From table A-6 attached and by interpolation at temperature of 360°C and Pressure of 10 bar, we have;

Specific volume;v1 = 0.287322 m³/kg

Mass flow rate of water vapour at turbine is defined by the formula;

m' = V'/v1

So; m' = 0.8/0.287322

m' = 2.784 kg/s

Now, From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific enthalpy;h1 = 3179.46 KJ/kg

Now, From table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific enthalpy;h2 = 3115.32 KJ/kg

Now, since stray heat transfer is neglected at turbine, we have;

-W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2 - h1)

Plugging in relevant values, the work of the turbine is;

W' = -2.784(3115.32 - 3179.46)

W' = 178.568 KW

B) Still From table A-6 attached and by interpolation at state 1 with temperature of 360°C and Pressure of 10 bar, we have;

Specific entropy: s1 = 7.3357 KJ/Kg.k

Still from table A-6 attached and by interpolation at state 2 with temperature of 160°C and Pressure of 1 bar, we have;

Specific entropy; s2 = 8.2828 KJ/kg.k

The amount of entropy produced is defined by;

ΔS = m'(s2 - s1)

ΔS = 2.784(8.2828 - 7.3357)

ΔS = 2.6367 KW/k

C) Still from table A-6 attached and by interpolation at state 2 with s2 = s2s = 8.2828 KJ/kg.k and Pressure of 1 bar, we have;

h2s = 2966.14 KJ/Kg

Energy equation for turbine at ideal process is defined as;

Q' - W' = m'[(h2 - h1) + ((V2)² - (V1)²)/2 + g(z2 - z1)]

Again, Potential and kinetic energy can be neglected and so we have;

-W' = m'(h2s - h1)

W' = -2.784(2966.14 - 3179.46)

W' = 593.88 KW

the isentropic turbine efficiency is defined as;

η = W_actual/W_ideal

η = 178.568/593.88 = 0.3

You might be interested in
You are stopped at a red traffic light and are first in line at the intersection. When the traffic light changes to green, you s
Ostrovityanka [42]

Answer:

Go, but only if the intersection is clear.

Explanation:

Traffic at intersection can be complicated at times. If the green light comes on after a red light, you have the right of way to go, but you should be careful to only go when the intersection is clear to avoid an accident. Once using the road, a good driver should be conscious of the other road users, as accidents might happen from you claiming your-right of-way

8 0
3 years ago
A 650-kN column load is supported on a 1.5 m square, 0.5 m deep spread footing. The soil below is a well-graded, normally consol
insens350 [35]

<u>Explanation:</u>

Determine the weight of footing

W_{f}=\gamma(L)(B)(D)

Where W_{f} is the weight of footing, γ is the unit weight of concrete,  L is the length of footing is the width of footing, and D is the depth of footing

Substitute 2 m \text { for } L, 1.5 m \text { for } B, 0.5 m \text { for } D \text { and } 23.6 kN / m ^{3} for γ in the equation

\begin{aligned}W_{f} &=\left(23.6 kN / m ^{3}\right)(2 m )(1.5 m )(0.5 m ) \\&=35.4 kN\end{aligned}

Therefore, the weight of the footing is 35.4 kN

Determine the initial vertical effective stress.

\sigma_{z p}^{\prime}=\gamma(D+B)-u

Here,   \sigma_{z^{p}}^{\prime} is initial vertical stress at a depth below ground surface  γ is the unit weight of soil, D is depth and u is pore water pressure.

Substitute 18 kN / m ^{3} \text { for } \gamma, 1.5 m \text { for } B, 0.5 m \text { for } D \text { and } 0 for u in the equation

\begin{aligned}\sigma_{z p}^{\prime} &=\left(18 kN / m ^{3}\right)(1.5+0.5) m -0 \\&=36 kPa\end{aligned}

Therefore, the initial vertical stress is 36 kPa

Determine the vertical effective stress.

\sigma_{z D}^{\prime}=\gamma D

Here,   \sigma_{z^{p}}^{\prime} is initial vertical stress at a depth below ground surface  γ is the unit weight of soil, D is depth and u is pore water pressure.

Substitute \(18 kN / m ^{3}\) for \(\gamma, 0.5 m\) for \(D\) and 0 for \(u\) in the equation.

\begin{aligned}\sigma_{z b}^{\prime} &=\left(18 kN / m ^{3}\right)(0.5 m )-0 \\&=9 kPa\end{aligned}

Therefore, the vertical stress at a depth below the ground surface is

9 kPa

Determine the influence factor at the midpoint of soil layer,

I_{e p}=0.5+0.1 \sqrt{\frac{q-\sigma_{s 0}^{\prime}}{\sigma_{z p}^{\prime}}}

Here I_{e p} is the influence factor at the midpoint of soil layer  \sigma_{z^{p}}^{\prime} is initial vertical stress, \sigma_{z^{p}}^{\prime} is vertical effective stress, and Q is bearing pressure

Substitute 36 kPa for \(\sigma_{z p}^{\prime}, 228.47\) kPa for \(q,\) and 9 kPa for \(\sigma_{z D}^{\prime}\) in the equation\begin{aligned}I_{\epsilon P} &=0.5+0.1 \sqrt{\frac{228.47 kPa -9 kPa }{36 kPa }} \\&=0.75\end{aligned}

Therefore the influence factor at the midpoint of the soil layer is 0.693

6 0
3 years ago
Ldentiy three industries that often need the skills of mechanical engineers. Briefly explain the skills that mechanical engineer
const2013 [10]

Answer:

3 industries that often need the skills of mechanical engineers are:

  • Automotive industry
  • Construction industry
  • Aerospace industry

The key skills mechanical engineers bring to these industries are effective technical skills, the ability to work under pressure, problem-solving skills, creativity and teamwork.

Explanation:

Automotive industry: The skills mechanical engineers bring to automotive industry include designing new cars for development, conducting laboratory testing for performance safety, and troubleshooting design or manufacturing issues with recalled vehicles. Automotive engineers have:

  • good mathematical skills, for instance in calculating the stresses power trains and other parts have to withstand;  
  • understanding and application of principles of physics and chemistry to properly design engines, electrical systems and other car components;  
  • good computer skills, because 21st century engineers rely on computer-assisted design software;
  • knowledge of ergonomics, which is applied in the process of designing a car so that the driver and passengers have a comfortable and functional environment, is another skill mechanical; engineers need.

Construction industry: Mechanical engineers are responsible for designing, building, establishing, and maintaining all kinds of mechanical machinery, tools, and components in the construction industry.

Aerospace industry: Mechanical engineers in aerospace industry produce specifications for design, development, manufacture and installing of new or modified mechanical components or systems. They design more fuel-efficient aircraft that cut emissions and build the fleets of satellites that power modern GPS technology.

4 0
3 years ago
Design a filter that has infinite DC gain, a gain of one from 1Hz to 100 Hz and filters (1storder) any signals above 100 Hz.a) S
EastWind [94]

Answer:

Attached below are the  sketches

answer :

c) G(s) = 100 / ( s + 100 )

d) y'(t)  + 100Y(s) = 100 X(s)

e) g(t) = e^-100t  u(t)

Explanation:

a) Sketch the bode plot

The filter here is a low pass filter

b) Sketch the s-plane

attached below.     pole ( s ) is at 100

c) write the transfer function of the filter

Transfer function ; G(s) = 100 / ( s + 100 )

d) write the differential equation

Y(s) / X(s) = 100 / s + 100

Y(s) [ s + 100 ] = 100 X(s)

= sY(s) + 100Y = 100 X(s)

∴ differential equation = y'(t)  + 100Y(s) = 100 X(s)

e) write out the unforced transient response

g(t) = e^-100t  u(t)

f) write out the frequency response

attached below

4 0
3 years ago
This assignment will give you more experience on the use of loops In this project, we are going to compute the number of times a
musickatia [10]

Answer:

import java.io.BufferedReader;

import java.io.File;

import java.io.FileReader;

import java.io.IOException;

import java.util.Scanner;

import java.util.StringTokenizer;

public class Tester {

public static void main(String[] args) throws IOException {

Scanner in=new Scanner(System.in);

   System.out.println("Enter a Number =======>");

   long N ;

   while (!in.hasNextLong()) {

       System.out.println("That's not a number!");

       in.next();

   }

   N=in.nextLong();

   System.out.println("Number Entered is =======>"+N);

   System.out.println("Enter a Digit =======>");

   int D;

   while (!in.hasNextLong()) {

       System.out.println("That's not a number!");

       in.next();

   }

   D=in.nextInt();

   System.out.println("Digit Entered is =======> "+ D);

   long que=N;

   int rem;

   int count=0;

   while(true){

       long temp;

       temp = (long)que/10;

       

       rem = (int) (que % 10);

       System.out.println(temp+" "+ que+" "+rem);

       if(rem==D) count++;

       que=temp;

       if(que==0) break;

       

   }

   System.out.println("The number of "+ D+"'s in "+ N + " is "+ count );;

   

   

}

}

Explanation:

  • Divide the que variable by 10 and assign its result to the temp variable.
  • Calculate the remainder.
  • Increment the count if the remainder is equal to the value of D variable and assign the value of que to temp variable.
3 0
3 years ago
Other questions:
  • The first step to merging is entering the ramp and _____.
    10·1 answer
  • Systematic searching is a skill that takes ________ to master.
    8·2 answers
  • Question 4 (1 point)
    8·1 answer
  • You have a solid square copper ground support, 2 inch per side X 6 inches tall, and it is loaded axially (long axis)with 1600 po
    11·1 answer
  • A gasoline engine has a piston/cylinder with 0.1 kg air at 4 MPa, 1527◦C after combustion, and this is expanded in a polytropic
    14·1 answer
  • For laminar flow over a hot flat plate, the local heat transfer coefficient decreases with distance because (select all that are
    7·1 answer
  • A 3.52 kg steel ball is tossed upward from a height of 6.93 meters above the floor with a vertical velocity of 2.99 m/s. What is
    14·1 answer
  • Evaporation in Double-Effect Reverse-Feed Evaporators. A feed containing 2 wt % dissolved organic solids in water is fed to a do
    14·1 answer
  • A logic chip used in a computer dissipates 3 W of power in an environment at 120°F, and has a heat transfer surface area of 0.08
    11·1 answer
  • Why is it better for a CPU to have more than one cache?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!