1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AfilCa [17]
3 years ago
10

The reverse water-gas shift (RWGS) reaction is an equimolar reaction between CO2 and H2 to form CO and H2O. Assume CO2 associati

vely adsorbs to the surface, while H2 dissociatively adsorbs. These adsorption steps are followed by reversible formation of formate (COOH*) and slow dissociation of formate into gaseous CO and adsorbed OH. The adsorbed OH is then removed as gaseous H2O via a hydrogenation step.
a) Using the details of the mechanism listed above, write out the elementary steps for the RWGS reaction.
b) Derive a rate law for the RWGS reaction consistent with the above assumptions and mechanism from (i).
c) Under what conditions is the RWGS reaction first order in CO2?
Engineering
1 answer:
klasskru [66]3 years ago
7 0

Answer:

a) Check explanation for this

b)Rate law is  Rate = \frac{k_{1}k_{4}  }{k_{3}+ 2k_{4}  } [H_{2} ]

c) The rate does not depend on the concentration of CO₂

Explanation:

a) Elementary steps for the RWGS reaction:

  • Dissociative adsorption of the H₂ Molecule

                 H_{2} $\xrightarrow{\text{k1}}$H + H   (Fast process)

  • Reversible Reaction between CO₂ and H

                \[ CO_{2} + H\mathrel{\mathop{\rightleftarrows}^{\mathrm{k2}}_{\mathrm{k3}}}COOH \] (Fast Process)

  • Slow dissociation of COOH into gaseous CO and absorbed OH

                COOH $\xrightarrow{\text{k1}}$ CO + OH (Slow process)

  • Fast hydrogenation of the OH to form H₂O

                   OH + H $\xrightarrow{\text{k5}}$H_{2} O (Fast process)

b) Derivation of the rate law

We need to determine the rate law for H, OH and COOH because these are the intermediates for this reaction.

The steady state approximation is applied to a consecutive reaction with a slow first step and a fast second step (k1≪k2). If the first step is very slow in comparison to the second step, there is no accumulation of intermediate product.

Rate of consumption = Rate of production

For COOH:

Using steady state approximation

\frac{d[COOH]}{dt} = 0

k_{2} [CO_{2} ][H] = k_{3} [COOH] k_{4} [COOH]\\

[COOH] = \frac{k_{2} [CO_{2} ][H]}{k_{3}k_{4}  } \\

For H:

\frac{d[H]}{dt} = 0

k_{1}[H_{2}] = k_{2}[CO_{2} [H]+k_{5} [ OH][H]

[H]= \frac{k_{1}[H_{2}]  }{k_{5}[OH] +k_{2}[CO_{2}]}\\

For OH:

\frac{d[OH]}{dt} = 0

k_{4} [COOH] = k_{5} [OH][H]\\\k[OH] = \frac{k_{4} [COOH]}{k_{5} H}\\

The rate of the overall reaction is determined by the slowest step of the reaction. The slowest process is the dissociation of COOH

Therefore the overall rate of reaction is:

Rate = k_{4} [COOH]\\

Rate = k_{4}  \frac{k_{2} [CO_{2} ][H]}{k_{3}k_{4}  }\\Rate = k_{4}  \frac{k_{2}[CO_{2}]\frac{k_{1}[H_{2}]  }{k_{5}[OH] +k_{2}[CO_{2}]}  }{k_{3}k_{4}}\\Rate = k_{4}  \frac{k_{2}[CO_{2}]\frac{k_{1}[H_{2}]  }{k_{5}\frac{k_{4}COOH }{k_{5}H }  +k_{2}[CO_{2}]}  }{k_{3}k_{4}}

Simplifying the equation above, the rate law becomes

Rate = \frac{k_{1}k_{4}  }{k_{3}+ 2k_{4}  } [H_{2} ]

c) It is obvious from the rate law written above that the rate of the RWBG reaction does not depend on the concentration of CO₂

You might be interested in
What are Tresca and Von Mises yield criteria?
elena-s [515]

Answer

For isotropic material plastic yielding depends upon magnitude of the principle stress not on the direction.

Tresca and Von Mises yield criteria are the yield model which is widely used.

The Tresca yield criterion stated that yielding will occur in a material only when the greatest maximum shear stress reaches a critical value.

max{|σ₁ - σ₂|,|σ₂ - σ₃|,|σ₃ - σ₁|} = σ_f

under plane stress condition

  |σ₁ - σ₂| = σ_f

The Von mises yielding criteria stated that the yielding will occur when elastic energy of distortion reaches critical value.

σ₁² - σ₁ σ₂ + σ₂² =  σ²_f

5 0
3 years ago
What is 4 principles of experimental design
Mrrafil [7]

Answer:

manipulation, control , random assignment, and random selection

Explanation:

7 0
1 year ago
Read 2 more answers
What is the magnitude of the maximum stress that exists at the tip of an internal crack having a radius of curvature of 3 × 10-4
Vladimir [108]

Answer:

maximum stress is 2872.28 MPa

Explanation:

given data

radius of curvature = 3 × 10^{-4} mm

crack length = 5.5 × 10^{-2} mm

tensile stress = 150 MPa

to find out

maximum stress

solution

we know that  maximum stress formula that is express as

\sigma m = 2 ( \sigma o ) \sqrt{\frac{a}{\delta t}}     ......................1

here σo is applied stress and a is half of internal crack and t is radius of curvature of tip of internal crack

so put here all value in equation 1 we get

\sigma m = 2 ( \sigma o) \sqrt{\frac{a}{\delta t}}  

\sigma m = 2(150) \sqrt{ \frac{\frac{5.5*10^{-2}}{2}}{3*10^{-4}}}  

σm = 2872.28 MPa

so maximum stress is 2872.28 MPa

8 0
3 years ago
Compute the theoretical density of ZnS given that the Zn-S distance and bond angle are 0.234 nm and 109.5o, respectively. The at
andriy [413]

Answer: the theoretical density is 4.1109 g/cm³

Explanation:  

first the image of one set of ZnS bonding in the crystal structure, we calculate the value of angle θ

θ + ∅ + 90° = 180°

θ = 90° - ∅

θ = 90° - ( 109.5° / 2 )

θ = 35.25°

next we calculate the value of x from the geometry

given that;  distance angle d = 0.234

x = dsinθ

= 0.234 × sin35.25°)

= 0.135 nm = 0.135 × 10⁻⁷ cm

next we calculate the length of the unit cell

a = 4x

a = 4(0.135)

a = 0.54 nm = 0.54 × 10⁻⁷ cm

next we calculate number of formula units

n' = (no of corner atoms in unit ell × contribution of each corner atom in unit cell) + ( no of face center atom in a unit cell × contribution of each face center atom in a unit cell)

n' = 8 × 1/8) + ( 6 × 1/2)

= 1 + 3

= 4

next we calculate the theoretical density using  this equation

P = [n'∑(Ac + AA)] / [Vc.NA]

= [n'∑(Ac + AA)] / [(a)³NA]

where the ∑Ac is sum of atomic weights of all cations in the formula unit( 65.41 g/mol)

∑AA is the sum of weights of all anions in the formula unit( 32.06 g/mol)

Na is the Avogadro’s number( 6.023 × 10²³ units/mole)

so we substitute

P = [4( 65.41 + 32.06)] / [ ( 0.54 × 10⁻⁷ )³ × (6.023 × 10²³)]

= 389.88 / 94.84

= 4.1109 g/cm³

therefore the theoretical density is 4.1109 g/cm³

5 0
3 years ago
A 50 Hz, four pole turbo-generator rated 100 MVA, 11 kV has an inertia constant of 8.0 MJ/MVA. (a) Find the stored energy in the
raketka [301]

Given Information:

Frequency = f = 60 Hz

Complex rated power = G = 100 MVA

Intertia constant = H = 8 MJ/MVA

Mechanical power = Pmech = 80 MW

Electrical power = Pelec = 50 MW

Number of poles = P = 4

No. of cycles = 10

Required Information:

(a) stored energy = ?

(b) rotor acceleration = ?

(c) change in torque angle = ?

(c) rotor speed = ?

Answer:

(a) stored energy = 800 Mj

(b) rotor acceleration = 337.46 elec deg/s²

(c) change in torque angle (in elec deg) = 6.75 elec deg

(c) change in torque angle (in rmp/s) = 28.12 rpm/s

(c) rotor speed = 1505.62 rpm

Explanation:

(a) Find the stored energy in the rotor at synchronous speed.

The stored energy is given by

E = G \times H

Where G represents complex rated power and H is the inertia constant of turbo-generator.

E = 100 \times 8 \\\\E = 800 \: MJ

(b) If the mechanical input is suddenly raised to 80 MW for an electrical load of 50 MW, find rotor acceleration, neglecting mechanical and electrical losses.

The rotor acceleration is given by

$ P_a = P_{mech} - P_{elec} = M \frac{d^2 \delta}{dt^2}  $

Where M is given by

$ M = \frac{E}{180 \times f} $

$ M = \frac{800}{180 \times 50} $

M = 0.0889 \: MJ \cdot s/ elec \: \: deg

So, the rotor acceleration is

$ P_a = 80 - 50 = 0.0889 \frac{d^2 \delta}{dt^2}  $

$  30 = 0.0889 \frac{d^2 \delta}{dt^2}  $

$   \frac{d^2 \delta}{dt^2} = \frac{30}{0.0889}  $

$   \frac{d^2 \delta}{dt^2} = 337.46 \:\: elec \: deg/s^2 $

(c) If the acceleration calculated in part(b) is maintained for 10 cycles, find the change in torque angle and rotor speed in revolutions per minute at the end of this period.

The change in torque angle is given by

$ \Delta  \delta = \frac{1}{2} \cdot \frac{d^2 \delta}{dt^2}\cdot (t)^2 $

Where t is given by

1 \: cycle = 1/f = 1/50 \\\\10 \: cycles = 10/50 = 0.2  \\\\t = 0.2 \: sec

So,

$ \Delta  \delta = \frac{1}{2} \cdot 337.46 \cdot (0.2)^2 $

$ \Delta  \delta = 6.75 \: elec \: deg

The change in torque in rpm/s is given by

$ \Delta  \delta = \frac{337.46 \cdot 60}{2 \cdot 360\circ  }   $

$ \Delta  \delta =28.12 \: \: rpm/s $

The rotor speed in revolutions per minute at the end of this period (10 cycles) is given by

$ Rotor \: speed = \frac{120 \cdot f}{P}  + (\Delta  \delta)\cdot t  $

Where P is the number of poles of the turbo-generator.

$ Rotor \: speed = \frac{120 \cdot 50}{4}  + (28.12)\cdot 0.2  $

$ Rotor \: speed = 1500  + 5.62  $

$ Rotor \: speed = 1505.62 \:\: rpm

4 0
3 years ago
Other questions:
  • A 10-ft-long simply supported laminated wood beam consists of eight 1.5-in. by 6-in. planks glued together to form a section 6 i
    5·1 answer
  • A fuel cell vehicle draws 50 kW of power at 70 mph and is 40% efficient at rated power. You are asked to size the fuel cell syst
    15·1 answer
  • Is it more difficult to pump oil from a well on dry land or a well under water?Why?
    11·1 answer
  • 5. A non-cold-worked brass specimen of average grain size 0.01 mm has a yield strength of 150 MPa. Estimate the yield strength o
    10·1 answer
  • g A food department is kept at -12oC by a refrigerator in an environment at 30oC. The total heat gain to the food department is
    7·1 answer
  • Emergency plans are being formulated so that rapid action can be taken in the event of an equipment failure. It is predicted tha
    12·2 answers
  • 6. What symptom will be exhibited on an engine equipped with a pneumatic governor system if the cooling fins
    14·1 answer
  • How do engineering and technology impact the natural world and environment
    6·1 answer
  • Kyla has obtained a bachelor’s degree in electronics engineering. In her search for a job, she comes across an advertisement tha
    11·1 answer
  • Along with refining craft skills another way to increase the odds for career advancement is to
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!