1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AfilCa [17]
3 years ago
10

The reverse water-gas shift (RWGS) reaction is an equimolar reaction between CO2 and H2 to form CO and H2O. Assume CO2 associati

vely adsorbs to the surface, while H2 dissociatively adsorbs. These adsorption steps are followed by reversible formation of formate (COOH*) and slow dissociation of formate into gaseous CO and adsorbed OH. The adsorbed OH is then removed as gaseous H2O via a hydrogenation step.
a) Using the details of the mechanism listed above, write out the elementary steps for the RWGS reaction.
b) Derive a rate law for the RWGS reaction consistent with the above assumptions and mechanism from (i).
c) Under what conditions is the RWGS reaction first order in CO2?
Engineering
1 answer:
klasskru [66]3 years ago
7 0

Answer:

a) Check explanation for this

b)Rate law is  Rate = \frac{k_{1}k_{4}  }{k_{3}+ 2k_{4}  } [H_{2} ]

c) The rate does not depend on the concentration of CO₂

Explanation:

a) Elementary steps for the RWGS reaction:

  • Dissociative adsorption of the H₂ Molecule

                 H_{2} $\xrightarrow{\text{k1}}$H + H   (Fast process)

  • Reversible Reaction between CO₂ and H

                \[ CO_{2} + H\mathrel{\mathop{\rightleftarrows}^{\mathrm{k2}}_{\mathrm{k3}}}COOH \] (Fast Process)

  • Slow dissociation of COOH into gaseous CO and absorbed OH

                COOH $\xrightarrow{\text{k1}}$ CO + OH (Slow process)

  • Fast hydrogenation of the OH to form H₂O

                   OH + H $\xrightarrow{\text{k5}}$H_{2} O (Fast process)

b) Derivation of the rate law

We need to determine the rate law for H, OH and COOH because these are the intermediates for this reaction.

The steady state approximation is applied to a consecutive reaction with a slow first step and a fast second step (k1≪k2). If the first step is very slow in comparison to the second step, there is no accumulation of intermediate product.

Rate of consumption = Rate of production

For COOH:

Using steady state approximation

\frac{d[COOH]}{dt} = 0

k_{2} [CO_{2} ][H] = k_{3} [COOH] k_{4} [COOH]\\

[COOH] = \frac{k_{2} [CO_{2} ][H]}{k_{3}k_{4}  } \\

For H:

\frac{d[H]}{dt} = 0

k_{1}[H_{2}] = k_{2}[CO_{2} [H]+k_{5} [ OH][H]

[H]= \frac{k_{1}[H_{2}]  }{k_{5}[OH] +k_{2}[CO_{2}]}\\

For OH:

\frac{d[OH]}{dt} = 0

k_{4} [COOH] = k_{5} [OH][H]\\\k[OH] = \frac{k_{4} [COOH]}{k_{5} H}\\

The rate of the overall reaction is determined by the slowest step of the reaction. The slowest process is the dissociation of COOH

Therefore the overall rate of reaction is:

Rate = k_{4} [COOH]\\

Rate = k_{4}  \frac{k_{2} [CO_{2} ][H]}{k_{3}k_{4}  }\\Rate = k_{4}  \frac{k_{2}[CO_{2}]\frac{k_{1}[H_{2}]  }{k_{5}[OH] +k_{2}[CO_{2}]}  }{k_{3}k_{4}}\\Rate = k_{4}  \frac{k_{2}[CO_{2}]\frac{k_{1}[H_{2}]  }{k_{5}\frac{k_{4}COOH }{k_{5}H }  +k_{2}[CO_{2}]}  }{k_{3}k_{4}}

Simplifying the equation above, the rate law becomes

Rate = \frac{k_{1}k_{4}  }{k_{3}+ 2k_{4}  } [H_{2} ]

c) It is obvious from the rate law written above that the rate of the RWBG reaction does not depend on the concentration of CO₂

You might be interested in
Convert A'B'C'D' + A'B'C'D + A'B'CD' + A'BC'D + AB'C'D' + AB'C'D+ AB'CD' to SOP form
bazaltina [42]

Answer:

thats really hard how could you answerthis hhhhhhh

6 0
3 years ago
Read 2 more answers
The air in a room has a pressure of 1 atm, a dry-bulb temperature of 24C, and a wet-bulb temperature of 17C. Using the psychrome
TEA [102]

Answer:

(a) Relative Humidity = 48%,

Specific humidity = 0.0095

(b) Enthalpy = 65 KJ/Kg of dry sir

Specific volume = 0.86 m^3/Kg of dry air

(c/d) 12.78 degree C

(e) Specific volume = 0.86 m^3/Kg of dry air

8 0
3 years ago
3. A 4-m × 5-m × 7-m room is heated by the radiator of a steam-heating system. The steam radiator transfers heat at a rate of 10
Natali [406]

Answer:

14.52 minutes

<u>OR</u>

14 minutes and 31 seconds

Explanation:

Let's first start by mentioning the specific heat of air at constant volume. We consider constant volume and NOT constant pressure because the volume of the room remains constant while pressure may vary.

Specific heat at constant volume at 27°C = 0.718 kJ/kg*K

Initial temperature of room (in kelvin) = 283.15 K

Final temperature (required) of room = 293.15 K

Mass of air in room= volume * density= (4 * 5 * 7) * (1.204 kg/m3) = 168.56kg

Heat required at constant volume: 0.718 * (change in temp) * (mass of air)

Heat required = 0.718 * (293.15 - 283.15) * (168.56) = 1,210.26 kJ

Time taken for temperature rise: heat required / (rate of heat change)

Where rate of heat change = 10000 - 5000 = 5000 kJ/hr

Time taken = 1210.26 / 5000 = 0.24205 hours

Converted to minutes = 0.24205 * 60 = 14.52 minutes

4 0
4 years ago
a stem and leaf display describes two-digit integers between 20 and 80. for one one of the classes displayed, the row appears as
allochka39001 [22]

Answer:

  52, 50, 54, 54, 56

Explanation:

The "stem" in this scenario is the tens digit of the number. Each "leaf" is the ones digit of a distinct number with the given tens digit.

  5 | 20446 represents the numbers 52, 50, 54, 54, 56

8 0
3 years ago
Determine the static pressure to stagnation pressure ratio associated with the following motion in standard air: (a) a runner mo
vredina [299]

Answer: a) 0.00017

b) 0.0013

c) 0.0022

d) 0.017

Explanation:

3 0
3 years ago
Other questions:
  • What is shown in the above figure?
    11·2 answers
  • Consider a cubical furnace with a side length of 3 m. The top surface is maintained at 700 K. The base surface has emissivity of
    13·1 answer
  • How do batteries and other types of power sources make physical computing systems more mobile?
    15·2 answers
  • Which situation might cause potential hazards at a construction site?
    12·2 answers
  • The device whose operation closely matches the way the clamp-on ammeter works is
    8·1 answer
  • Please Help It's really Important
    12·1 answer
  • Given the circuit at the right in which the following values are used: R1 = 20 kΩ, R2 = 12 kΩ, C = 10 µ F, and ε = 25 V. You clo
    11·1 answer
  • Which of the following devices is a simple machine?
    11·2 answers
  • 50 points
    7·1 answer
  • Hi all any one help me?? ​
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!