Answer:
1 ⇒ D
2 ⇒ H
3 ⇒ B
4 ⇒ G
5 ⇒ A
6 ⇒ F
7 ⇒ E
8 ⇒ C
Step-by-step explanation:
* Lets explain how to solve the problem
- The left column has expressions and the right column has the
equivalent expressions
- We must find the equivalent letter for each number
1.
# 7(12)
∵ 12 can be a sum of two numbers
∴ The equivalent expression to 7(12) is 7(8 + 4)
∴ 1 ⇒ D
2.
# 3(15)
∵ 3 can be a sum of two numbers
∴ The equivalent expression to 3(15) is (2 + 1)(15)
∴ 2 ⇒ H
3.
# 3a + 9
∵ 3 and 9 have a common factor 3
∵ 3a + 9 ⇒ divide them by 3
∵ 3a ÷ 3 = a and 9 ÷ 3 = 3
∴ 3a + 9 = 3(a + 3)
∴ The equivalent expression to 3a + 9 is 3(a + 3)
∴ 3 ⇒ B
4.
# 9a + 3
∵ 9 and 3 have a common factor 3
∵ 9a + 3 ⇒ divide them by 3
∵ 9a ÷ 3 = 3a and 3 ÷ 3 = 1
∴ 9a + 3 = 3(3a + 1)
∴ The equivalent expression to 9a + 3 is 3(3a + 1)
∴ 4 ⇒ G
5.
# 5 + 15a
∵ 5 and 15 have a common factor 5
∵ 5 + 15a ⇒ divide them by 5
∵ 5 ÷ 5 = 1 and 15a ÷ 5 = 3a
∴ 5 + 15a = 5(1 + 3a)
∴ The equivalent expression to 5 + 15a is 5(1 + 3a)
∴ 5 ⇒ A
6.
# 10 + 5a
∵ 10 and 5 have a common factor 5
∵ 10 + 5a ⇒ divide them by 5
∵ 10 ÷ 5 = 2 and 5a ÷ 5 = a
∴ 10 + 5a = 5(2 + aa)
∴ The equivalent expression to 10 + 5a is 5(2 + a)
∴ 6 ⇒ F
7.
# 3x + 6y + 9z
∵ The coefficient of x , y , z have a common factor 3
∵ 3x ÷ 3 = x
∵ 6y ÷ 3 = 2y
∵ 9z ÷ 3 = 3z
∴ 3x + 6y + 9z = 3(x + 2y + 3z)
∴ The equivalent expression to 3x + 6y + 9z is 3(x + 2y + 3z)
∴ 7 ⇒ E
8.
# 3x + 3y + 3z
∵ The coefficient of x , y , z have a common factor 3
∵ 3x ÷ 3 = x
∵ 3y ÷ 3 = y
∵ 3z ÷ 3 = z
∴ 3x + 3y + 3z = 3(x + y + z)
∴ The equivalent expression to 3x + 3y + 3z is 3(x + y + z)
∴ 8 ⇒ C