Answer:If an object's speed changes, or if it changes the direction it's moving in,
then there must be forces acting on it. There is no other way for any of
these things to happen.
Once in a while, there may be a group of forces (two or more) acting on
an object, and the group of forces may turn out to be "balanced". When
that happens, the object's speed will remain constant, and ... if the speed
is not zero ... it will continue moving in a straight line. In that case, it's not
possible to tell by looking at it whether there are any forces acting on it
Answer:
<u />
<u />
Explanation:
From the question we are told that:
The Electric field of strength direction =Right
The Velocity of The First Electron=V_0
The Velocity of The Second Electron=V_0
Therefore

Generally, the equation for the Horizontal Displacement of electron is mathematically given by

Where
Acceleration is given as

And
Time

Therefore horizontal displacement towards the left is

<u />
<u />
I think that number five is lithium
Answer:
It will be cut in half
Explanation:
The diffraction of a slit is given by the formula
a sin θ = m where
a = width of the slit,
λ = wavelength and
m = integer that determines the order of diffraction.
Next we divide both sides by a, we have
sin θ = m λ / a
Also, recall that
a’ = 2 a
Then we substitute in the previous equation
2asin θ' = m λ, if divide by 2a, we have
sin θ' = (m λ / 2a).
Now again, from the first equation, we said that sin θ = m λ / a, so we substitute
sin θ ’= sin θ / 2
Then we use trigonometry to find the width, we say
tan θ = y / L
Since the angle is small, we then have
tan θ = sin θ / cos θ
tan θ = sin θ, this then means that
sin θ = y / L
we will then substitute
y’ / L = y/L 1/2
y' = y / 2
this means that when the slit width is doubled the pattern width will then be halved