1) 
The capacitance of a parallel-plate capacitor is given by:

where
is the vacuum permittivity
A is the area of each plate
d is the distance between the plates
Here, the radius of each plate is

so the area is

While the separation between the plates is

So the capacitance is

And now we can find the energy stored,which is given by:

2) 0.71 J/m^3
The magnitude of the electric field is given by

and the energy density of the electric field is given by

and using
, we find

I believe it’s stay in motion if it’s not acted on by an unbalanced force
Use the definition of acceleration:
Acceleration = (change of velocity) divided by (time for the change)
The graph says:
Change of velocity = -6 m/s
Time for the change = 3 sec
So Acceleration = (-6m/s) / (3 s)
That's -6/3 m/s•s
or
-2 m/s^2
Answer:
V=15.3 m/s
Explanation:
To solve this problem, we have to use the energy conservation theorem:

the elastic potencial energy is given by:

The work is defined as:

this work is negative because is opposite to the movement.
The gravitational potencial energy at 2.5 m aboves is given by:

the gravitational potential energy at the ground and the kinetic energy at the begining are 0.

Answer:
The third drop is 0.26m
Explanation:
The drop 1 impacts at time T is given by:
T=sqrt(2h/g)
T= sqrt[(2×2.4)/9.8]
T= sqrt(4.8/9.8)
T= sqrt(0.4898)
T= 0.70seconds
4th drops starts at dT=0.70/3= 0.23seconds
The interval between the drops is 0.23seconds
Third drop will fall at t= 0.23
h=1/2gt^2
h= 1/2×9.81×(0.23)^2
h= 0.26m