When the balanced force is applied on the ball It will roll away from the force.
<u>Explanation:</u>
- A ball lies on the floor in rest. If the balanced force is applied to
the ball, the force will push away.
- The forces would include gravity and the forces of air particles entering the ball from almost all directions.
- And the ground is exercising the force and shifting away from the impact.
<u></u>
<u />
Answer:
a

b

Explanation:
From the question we are told that
The mass of the person is 
The speed of the person is 
The energy of the proton is 
Generally the de Broglie wavelength is mathematically represented as

Here h is the Planck constant with the value

So

=> 
Generally the energy of the proton is mathematically represented as

Here
is the mass of proton with value 
=> 
=> 
=> 
So

so 
=> 
Answer:
n = 1.56
Explanation:
The total reflection attempts occurs when a light beam passes from a medium with a higher index to a medium with a lower nest, at an angle where it occurs we can find them by the refractive relationship
n₁ sin θ₁ = n₂ sin θ₂
n1 = n2 / sin θ₁
For this relationship to be fulfilled, the liquid index must be greater than the air index divided by the sine of the critical angle
Let's use trigonometry to find angle
tan θ = y / x
θ = tan⁻¹ 7.2 / 8.6
θ = 39.94º
n₁ = 1 / sin 39.94
n = 1.56
This is the refractive index of the liquid
Answer:
option (b)
Explanation:
mass of proton, mp = m
mass of deuteron, md = 2m
charge on proton, qp = q
charge on deuteron, qd = q
The magnetic force on the charged particle when it is moving is given by
F = q v B Sinθ
where, θ is the angle between the velocity and magnetic field.
Here, θ = 90°
Let v is the velocity of both the particle when they enters in the magnetic field.
The force on proton is given by
Fp = q x v x B ...... (1)
The force on deuteron is
Fd = q x v x B .... (2)
Divide equation (1) by equation (2)
Fp / Fd = 1
Thus, the ratio of force on proton to the force on deuteron is 1 : 1.
Thus, option (b) is correct.
V = 3.0 x 10⁸ m/s (This is the same for all types of electromagnetic waves)
f = 88.6 MHz = 8.86 x 10⁷ Hz
λ = ?
V = fλ
λ = V/f = (3 x 10⁸)/(8.86 x 10⁷)
= 3.4 m [Ans]
Hope this helps!