Answer:
400ft. 32ft/s -32ft/s
Explanation:
In reality the gravitational acceleration is 9.81 so the quadratic coefficient of the function should be 9.81/2
Anyway for the sake of assumtion let us takes=160t-16t^2
ds/dt=160-32t=0
t=160/32= 5 seconds.
s=160*160/32-16*(160/32)^2= 400 mts
s=384 mts
160t-16t^2=384
i.e
16t^2-160t+384=0
t^2-10t+24=0
(t-6)(t-4)=0
t=[4,6]
we have to take t=4 because it is all the up i.e <5
velocity =v=ds/dt=160-32t
v=160-32*4=32 ft/sec still going up
for all the way down take t=6 whuch is >5
v=160-6*32=-32 ft/sec (falling down!!!)
Explanation:
The angle of the handle relative to the horizontal is 35°. The angle of the ramp to the horizontal is 7°. So the angle of the handle relative to the ramp is 28°.
cos 28° = 50 / F
F = 50 / cos 28°
F = 56.6 lbs
Answer:
How do you find the net force?
Explanation:
i think this is want you asked for?
The addition of vectors involve both magnitude and direction. In this case, we make use of a triangle to visualize the problem. The length of two sides were given while the measure of the angle between the two sides can be derived. We then assign variables for each of the given quantities.
Let:
b = length of one side = 8 m
c = length of one side = 6 m
A = angle between b and c = 90°-25° = 75°
We then use the cosine law to find the length of the unknown side. The cosine law results to the formula: a^2 = b^2 + c^2 -2*b*c*cos(A). Substituting the values, we then have: a = sqrt[(8)^2 + (6)^2 -2(8)(6)cos(75°)]. Finally, we have a = 8.6691 m.
Next, we make use of the sine law to get the angle, B, which is opposite to the side B. The sine law results to the formula: sin(A)/a = sin(B)/b and consequently, sin(75)/8.6691 = sin(B)/8. We then get B = 63.0464°. However, the direction of the resultant vector is given by the angle Θ which is Θ = 90° - 63.0464° = 26.9536°.
In summary, the resultant vector has a magnitude of 8.6691 m and it makes an angle equal to 26.9536° with the x-axis.
Gamma rays then x rays then UVA rays then visible light then IR then radio waves (from highest to lowest frequency).